.. _mapping-2_magneto-elastic: *************************** Magneto-elastic interaction *************************** Magneto-elastic interaction involves either two entities or one entity. Therefore, it can be expressed via the terms :math:`\mathcal{H}_2` and :math:`\mathcal{H}_1`. .. math:: \mathcal{H}_2 = C_2 \sum_{\substack{\mu_1, \mu_2,\\ \alpha_1, \alpha_2,\\ i_1, i_2}} V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2} .. math:: \mathcal{H}_1 = C_1 \sum_{\substack{\mu_1,\\ \alpha_1,\\ i_1}} V_{\mu_1; \alpha_1}^{i_1} X_{\mu_1; \alpha_1}^{i_1} The summary of the mapping for two terms is given in the tables below. Magneto-elastic interaction (1) =============================== .. warning:: This is wrong, the mapping can not be performed in the formalism of the attempt #2. See attempt #3, there this problem is resolved. .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_mcphase` * - :math:`\mathcal{H}` - .. math:: \hat{\mathcal{H}}_{ME1} = - \sum_n \sum_{\alpha=1,\dots,6, lm} G^{\alpha,l,m}_{\text{cfph}}(n) \epsilon_{\alpha} O_{lm}(\hat{\mathbf{J}}^n) * - Indices renaming - :math:`n \rightarrow (\mu_1; \alpha_1)`, :math:`(l,m) \rightarrow i_1` * - :math:`C_1` - :math:`-1` * - :math:`V_{\mu_1; \alpha_1}^{i_1}` - :math:`\sum_{\alpha=1,\dots,6}G^{\alpha, i_1}_{\text{cfph}}(\mu_1,\alpha_1)\epsilon_{\alpha}` * - :math:`X_{\mu_1; \alpha_1}^{i_1}` - :math:`O_{i_1}(\hat{\mathbf{J}}^{\mu_1, \alpha_1})` Magneto-elastic interaction (2) =============================== .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_mcphase` * - :math:`\mathcal{H}` - .. math:: \hat{\mathcal{H}}_{ME2} = - \sum_{\substack{n