.. _mapping-2_two-ion-crystal-field: ********************* Two-ion crystal field ********************* Two-ion crystal field involves two sites and two entities. Therefore, it can be expressed via the term :math:`\mathcal{H}_2`. .. math:: \mathcal{H}_2 = C_2 \sum_{\substack{\mu_1, \mu_2,\\ \alpha_1, \alpha_2,\\ i_1, i_2}} V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2} The summary of the mapping for each code is given in the table below. .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_mcphase` (v1) - :ref:`zoo_mcphase` (v2) * - :math:`\mathcal{H}` - .. math:: \hat{\mathcal{H}} = -\dfrac{1}{2} \sum_{nn^{\prime}} \sum_{ll^{\prime}} \sum_{mm^{\prime}} K_{ll^{\prime}}^{mm^{\prime}}(nn^{\prime}) \hat{O}_{lm}(\mathbf{J}^n) \hat{O}_{l^{\prime}m^{\prime}}(\mathbf{J}^{n^{\prime}}) - .. math:: \hat{\mathcal{H}} = - \dfrac{1}{2} \sum_{nn^{\prime}} \Biggl[ \sum_{kk^{\prime}} \sum_{qq^{\prime}} \mathcal{K}_{kk^{\prime}}^{qq^{\prime}}(nn^{\prime}) \hat{T}_{kq}^n \hat{T}_{k^{\prime}q^{\prime}}^{n^{\prime}} \Biggr] * - Indices renaming - :math:`(l,m) \rightarrow i_1`, :math:`(l^{\prime},m^{\prime}) \rightarrow i_2`, :math:`n \rightarrow (\mu_1, \alpha_1)`, :math:`n^{\prime} \rightarrow (\mu_2, \alpha_2)` - :math:`(k,q) \rightarrow i_1`, :math:`(k^{\prime},q^{\prime}) \rightarrow i_2`, :math:`n \rightarrow (\mu_1, \alpha_1)`, :math:`n^{\prime} \rightarrow (\mu_2, \alpha_2)` * - :math:`C_2` - :math:`-\dfrac{1}{2}` - :math:`-\dfrac{1}{2}` * - :math:`V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2}` - :math:`K_{i_1, i_2}(\mu_1, \alpha_1; \mu_2, \alpha_2)` - :math:`\mathcal{K}_{i_1, i_2}(\mu_1, \alpha_1; \mu_2, \alpha_2)` * - :math:`X_{\mu_1; \alpha_1}^{i_1}` - :math:`\hat{O}_{i_1}(\mathbf{J}^{\mu_1, \alpha_1})` - :math:`\hat{T}_{i_1}^{\mu_1, \alpha_1}` * - :math:`X_{\mu_2; \alpha_2}^{i_2}` - :math:`\hat{O}_{i_2}(\mathbf{J}^{\mu_2, \alpha_2})` - :math:`\hat{T}_{i_2}^{\mu_2, \alpha_2}` .. note:: - Pairs of indices :math:`(l,m)` (:math:`(l^{\prime},m^{\prime})`) or :math:`(k,q)` (:math:`(k^{\prime},q^{\prime})`) run over the finite set of the sets of two integers. Therefore, they can be enumerated with a single integer and mapped to the index :math:`i_1` (:math:`i_2`). Two-ion crystal field (ambiguity) --------------------------------- Two-ion crystal field terms suffer from the same ambiguity as the single-ion crystal field terms, see :ref:`mapping_crystal-field_ambiguity`. An alternative mapping will result in terms of the general Hamiltonian with two sites and arbitrary amount of entities.