.. _mapping-3_bilinear-exchange: ***************** Bilinear exchange ***************** Bilinear exchange involves two entities. Therefore, it can be expressed via the term :math:`\mathcal{H}_{0, 2}`. .. math:: \mathcal{H}_{0, 2} = C_{0, 2} \sum_{\substack{\mu_1, \mu_2,\\ \alpha_1, \alpha_2,\\ i_1, i_2}} V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2} The summary of the mapping for each code is given in the table below. .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_grogu` - :ref:`zoo_jukkr`, :ref:`zoo_tb2j` - :ref:`zoo_magpie` - :ref:`zoo_mcphase` - :ref:`zoo_spinw` - :ref:`zoo_spirit` - :ref:`zoo_sunny` * - :math:`\mathcal{H}` - .. math:: \frac{1}{2} \sum_{i\neq j} \boldsymbol{e}_{i} \cdot \boldsymbol{J}_{ij} \cdot \boldsymbol{e}_{j} - .. math:: - \sum_{i\ne j} \mathbf{S}_{i} \cdot \boldsymbol{J}_{ij} \cdot \mathbf{S}_{j} - .. math:: \sum_{i \neq j} J_{ij} \, \mathbf{S}_i \cdot \mathbf{S}_j + \sum_{i \neq j} \mathbf{D}_{ij} \cdot \left( \mathbf{S}_i \times \mathbf{S}_j \right) - .. math:: - \dfrac{1}{2} \sum_{nn^{\prime}, \alpha\beta} \mathcal{J}_{\alpha\beta}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n}) \hat{\mathcal{I}}_{\alpha}^n \hat{\mathcal{I}}_{\beta}^{n^{\prime}} - .. math:: \sum_{i \neq j} \mathbf{S}_i J_{ij} \mathbf{S}_j - .. math:: -\frac{1}{2} \sum_{i\neq j} J_{ij}^{\alpha\beta} n_i^\alpha n_j^\beta - .. math:: \sum_{i