.. _mapping-3_exchange_striction: ****************** Exchange striction ****************** Exchange striction involves two entities of type :math:`X` and one entity of type :math:`Y`. Therefore, it can be expressed via the term :math:`\mathcal{H}_{1, 2}`. .. math:: \mathcal{H}_{1, 2} = C_{1, 2} \sum_{\substack{\mu_1, \mu_2,\\ \alpha_1, \alpha_2,\\ j_1, i_1, i_2}} V_{1; \mu_1, \mu_2; \alpha_1, \alpha_2}^{j_1, i_1, i_2} Y_{1}^{j_1} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2} The summary of the mapping for each code is given in the table below. .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_mcphase` * - :math:`\mathcal{H}` - .. math:: \hat{\mathcal{H}} = - \dfrac{1}{2} \sum_{\substack{nn^{\prime},\alpha\beta\alpha^{\prime}\gamma=1,2,3\\\beta^{\prime}=1-6}} \Biggl( \dfrac{\partial \mathcal{J}_{\alpha\beta}}{\partial \epsilon_{\beta^{\prime}}} + \dfrac{\partial \mathcal{J}_{\alpha\beta}}{\partial R_{nn^{\prime}}^{\alpha^{\prime}}} \dfrac{\partial \epsilon_{\alpha^{\prime}\gamma} R_{nn^{\prime}}^{\gamma}}{\partial \epsilon_{\beta^{\prime}}} \Biggr) \epsilon_{\beta^{\prime}} \hat{\mathcal{I}}_{\alpha}^n \hat{\mathcal{I}}_{\beta}^{n^{\prime}} * - Indices renaming - :math:`n \rightarrow (\mu_1, \alpha_1)`, :math:`n^{\prime} \rightarrow (\mu_2, \alpha_2)`, :math:`\alpha \rightarrow i_1`, :math:`\beta \rightarrow i_2` :math:`\beta^{\prime} \rightarrow j_1` * - :math:`C_{1, 2}` - :math:`-\dfrac{1}{2}` * - :math:`V_{1; \mu_1, \mu_2; \alpha_1, \alpha_2}^{j_1, i_1, i_2}` - .. math:: \sum_{\alpha^{\prime}\gamma=1,2,3} \Biggl( \dfrac{\partial \mathcal{J}_{i_1,i_2}}{\partial \epsilon_{j_1}} + \dfrac{\partial \mathcal{J}_{i_1,i_2}}{\partial R_{\mu_1,\mu_2;\alpha_1,\alpha_2}^{\alpha^{\prime}}} \dfrac{\partial \epsilon_{\alpha^{\prime}\gamma} R_{\mu_1,\mu_2;\alpha_1,\alpha_2}^{\gamma}}{\partial \epsilon_{j_1}} \Biggr) * - :math:`Y_{1}^{j_1}` - :math:`\epsilon_{j_1}` * - :math:`X_{\mu_1; \alpha_1}^{i_1}` - :math:`\hat{\mathcal{I}}_{i_1}^{\mu_1,\alpha_1}` * - :math:`X_{\mu_2; \alpha_2}^{i_2}` - :math:`\hat{\mathcal{I}}_{i_2}^{\mu_2,\alpha_2}`