.. _mapping-3_magneto-elastic: *************************** Magneto-elastic interaction *************************** Magneto-elastic interaction involves two entities (:math:`X` and :math:`X` or :math:`Y` and :math:`X`). Therefore, it can be expressed via the terms :math:`\mathcal{H}_{0, 2}` and :math:`\mathcal{H}_{1, 1}`. .. math:: \mathcal{H}_{0, 2} = C_{0, 2} \sum_{\substack{\mu_1, \mu_2,\\ \alpha_1, \alpha_2,\\ i_1, i_2}} V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2} .. math:: \mathcal{H}_{1, 1} = C_{1, 1} \sum_{\substack{\mu_1,\\ \alpha_1,\\ j_1, i_1}} V_{1; \mu_1; \alpha_1}^{j_1, i_1} Y_{1}^{j_1} X_{\mu_1; \alpha_1}^{i_1} The summary of the mapping for two terms is given in the tables below. .. _mapping-3_magneto-elastic-1: Magneto-elastic interaction (1) =============================== .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_mcphase` * - :math:`\mathcal{H}` - .. math:: \hat{\mathcal{H}}_{ME1} = - \sum_n \sum_{\alpha=1,\dots,6, lm} G^{\alpha,l,m}_{\text{cfph}}(n) \epsilon_{\alpha} O_{lm}(\hat{\mathbf{J}}^n) * - Indices renaming - :math:`n \rightarrow (\mu_1; \alpha_1)`, :math:`(l,m) \rightarrow i_1`, :math:`\alpha \rightarrow j_1` * - :math:`C_{1, 1}` - :math:`-1` * - :math:`V_{1; \mu_1; \alpha_1}^{j_1,i_1}` - :math:`G^{\alpha, i_1}_{\text{cfph}}(\mu_1,\alpha_1)` * - :math:`Y_{1}^{j_1}` - :math:`\epsilon_{j_1}` * - :math:`X_{\mu_1; \alpha_1}^{i_1}` - :math:`O_{i_1}(\hat{\mathbf{J}}^{\mu_1, \alpha_1})` .. _mapping-3_magneto-elastic-2: Magneto-elastic interaction (2) =============================== .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_mcphase` * - :math:`\mathcal{H}` - .. math:: \hat{\mathcal{H}}_{ME2} = - \sum_{\substack{n