.. _mapping-3_on-site-k: ********************** On-site anisotropy (k) ********************** Contributions to the term with :math:`k = 1` are discussed in :ref:`mapping_zeeman`, with :math:`k = 2` in :ref:`mapping_on-site-k2`, with :math:`k = 4` in :ref:`mapping_on-site-k4`. In this page we discuss the term with arbitrary :math:`k`. Spirit ------ In :ref:`zoo_spirit`, the on-site anisotropy term is written as .. math:: \begin{alignedat}{1} \mathcal{H}_{\rm biaxial} & = \sum_{j} \sum_{n_1,n_2,n_3} K_j^{(n_1, n_2, n_3)} (1 - (\hat{K}_j^{(1)}\cdot\vec{n}_j)^2)^{n_1} \cdot (\hat{K}_j^{(2)}\cdot\vec{n}_j)^{n_2} \cdot ((\hat{K}_j^{(1)} \times \hat{K}_j^{(2)} ) \cdot\vec{n}_j)^{n_3} \\ & = \sum_{j} \sum_{n_1,n_2,n_3} K_j^{(n_1, n_2, n_3)} \cdot [\sin(\theta_j)]^{2n_1} \cdot [\cos(\varphi_j)\sin(\theta_j)]^{n_2} \cdot [\sin(\varphi_j)\sin(\theta_j)]^{n_3} \\ & = \sum_{j} \sum_{n_1,n_2,n_3} K_j^{(n_1, n_2, n_3)} \cdot [\sin(\theta_j)]^{2n_1 + n_2 + n_3} \cdot [\cos(\varphi_j)]^{n_2} \cdot [\sin(\varphi_j)]^{n_3}, \\ \end{alignedat} #TODO (mapping is possible, but the interpretation of the original Hamiltonian is unclear at the moment)