.. _mapping-4_biquadratic-exchange: ******************** Biquadratic exchange ******************** Bilinear exchange involves four entities (two entities per site). Therefore, it can be expressed via the term :math:`\mathcal{H}_4`. .. math:: \mathcal{H}_4 = C_4 \sum_{\substack{\mu_1, \mu_2, \mu_3, \mu_4\\ \alpha_1, \alpha_2, \alpha_3, \alpha_4\\ i_1, i_2, i_3, i_4}} V_{\mu_1, \mu_2, \mu_3, \mu_4; \alpha_1, \alpha_2, \alpha_3, \alpha_4}^{i_1, i_2, i_3, i_4} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2} X_{\mu_3; \alpha_3}^{i_3} X_{\mu_4; \alpha_4}^{i_4} The summary of the mapping for each code is given in the table below. .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_spinw` - :ref:`zoo_spirit` * - :math:`\mathcal{H}` - .. math:: \mathcal{H} = \sum_{i \neq j} B (\mathbf{S}_i \cdot \mathbf{S}_j)^2 - .. math:: \mathcal{H}_{\rm quad} = - \sum_{ij} K_{ij} (\vec{n}_i \cdot \vec{n}_j)^2 * - Indices renaming - :math:`i \rightarrow (\mu_1, \alpha_1)`, :math:`j \rightarrow (\mu_2, \alpha_2)` - :math:`i \rightarrow (\mu_1, \alpha_1)`, :math:`j \rightarrow (\mu_2, \alpha_2)` * - :math:`C_4` - 1 - -1 * - :math:`V_{\mu_1, \mu_2, \mu_3, \mu_4; \alpha_1, \alpha_2, \alpha_3, \alpha_4}^{i_1, i_2, i_3, i_4}` - :math:`B\cdot \delta_{\mu_1, \mu_2} \delta_{\mu_3,\mu_4} \delta_{\alpha_1, \alpha_2} \delta_{\alpha_3,\alpha_4}` if :math:`(i_1, i_2, i_3, i_4) \in \mathcal{K}` and 0 otherwise. - :math:`K_{\mu_1, \mu_2; \alpha_1, \alpha_2}` if :math:`(i_1, i_2, i_3, i_4) \in \mathcal{K}` and 0 otherwise. * - :math:`X_{\mu_1; \alpha_1}^{i_1}` - :math:`S_{\mu_1; \alpha_1}^{i_1}` - :math:`n_{\mu_1; \alpha_1}^{i_1}` * - :math:`X_{\mu_2; \alpha_2}^{i_2}` - :math:`S_{\mu_2; \alpha_2}^{i_2}` - :math:`n_{\mu_2; \alpha_2}^{i_2}` * - :math:`X_{\mu_3; \alpha_3}^{i_3}` - :math:`S_{\mu_3; \alpha_3}^{i_3}` - :math:`n_{\mu_3; \alpha_3}^{i_3}` * - :math:`X_{\mu_4; \alpha_4}^{i_4}` - :math:`S_{\mu_4; \alpha_4}^{i_4}` - :math:`n_{\mu_4; \alpha_4}^{i_4}` .. note:: - :math:`\mathcal{K} = \{(x,x,x,x), (y,y,y,y), (z,z,z,z), (x,y,x,y), (x,z,x,z), (y,z,y,z), (y,x,y,x), (z,x,z,x), (z,y,z,y)\}` - :ref:`zoo_spirit` Spirit includes more general Hamiltonian that is called "quadruplet interaction" .. math:: \mathcal{H}_{\rm quad} = - \sum_{ijkl} K_{ijkl} (\vec{n}_i \cdot \vec{n}_j)(\vec{n}_k \cdot \vec{n}_l) in the case :math:`i = k` and :math:`j = l` (or, equivalently, :math:`i = l` and :math:`j = k`) this interaction describe a biquadratic exchange. Other cases are considered in the page :ref:`mapping_quadruplet`.