.. _mapping-4_crystal-field: ************* Crystal field ************* Crystal field terms involve either one or :math:`k` entities (depending on the mapping procedure choice). Consider case with one entity as a preferred mapping scheme. Then, it can be expressed via the term :math:`\mathcal{H}_1`. .. math:: \mathcal{H}_1 = C_1 \sum_{\mu_1, \alpha_1, i_1} V_{\mu_1; \alpha_1}^{i_1} X_{\mu_1; \alpha_1}^{i_1} The summary of the mapping for each code is given in the table below. .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_mcphase` (v1) - :ref:`zoo_mcphase` (v2) - :ref:`zoo_sunny` * - :math:`\mathcal{H}` - .. math:: \hat{\mathcal{H}} = \sum_n \sum_{lm} B_l^m \hat{O}_{lm}(\mathbf{J}^n) - .. math:: \hat{\mathcal{H}} = \sum_n \sum_{lm} L_l^m(n) \hat{T}_{lm}^{n} - .. math:: \mathcal{H} = \sum_{i}\sum_{k,q} c_{i,k,q} \mathcal{O}_{k,q} (\mathbf{S}_{i}) * - Indices renaming - :math:`n \rightarrow (\mu_1, \alpha_1)`, :math:`(l,m) \rightarrow i_1` - :math:`n \rightarrow (\mu_1, \alpha_1)`, :math:`(l,m) \rightarrow i_1` - :math:`i \rightarrow (\mu_1, \alpha_1)`, :math:`(k,q) \rightarrow i_1` * - :math:`C_1` - 1 - 1 - 1 * - :math:`V_{\mu_1; \alpha_1}^{i_1}` - :math:`B^{i_1}` - :math:`L^{i_1}(\mu_1, \alpha_1)` - :math:`c_{\mu_1, \alpha_1, i_1}` * - :math:`X_{\mu_1; \alpha_1}^{i_1}` - :math:`\hat{O}_{i_1}(\mathbf{J}^{\mu_1, \alpha_1})` - :math:`\hat{T}_{i_1}^{\mu_1, \alpha_1}` - :math:`\mathcal{O}_{i_1}(\mathbf{S}_{\mu_1, \alpha_1})` .. note:: - Pairs of indices :math:`(l,m)` or :math:`(k,q)` run over the finite set of the sets of two integers. Therefore, they can be enumerated with a single integer and mapped to the index :math:`i_1`.