.. _mapping-4_exchange_striction: ****************** Exchange striction ****************** Exchange striction involves three entities. Therefore, it can be expressed via the term :math:`\mathcal{H}_3`. .. math:: \mathcal{H}_3 = C_3 \sum_{\substack{\mu_1, \mu_2, \mu_3\\ \alpha_1, \alpha_2, \alpha_3\\ i_1, i_2, i_3}} V_{\mu_1, \mu_2, \mu_3; \alpha_1, \alpha_2, \alpha_3}^{i_1, i_2, i_3} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2} X_{\mu_3; \alpha_3}^{i_3} The summary of the mapping for each code is given in the table below. .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_mcphase` * - :math:`\mathcal{H}` - .. math:: \hat{\mathcal{H}} = - \dfrac{1}{2} \sum_{\substack{nn^{\prime},\alpha\beta\alpha^{\prime}\gamma=1,2,3\\\beta^{\prime}=1-6}} \Biggl( \dfrac{\partial \mathcal{J}_{\alpha\beta}}{\partial \epsilon_{\beta^{\prime}}} + \dfrac{\partial \mathcal{J}_{\alpha\beta}}{\partial R_{nn^{\prime}}^{\alpha^{\prime}}} \dfrac{\partial \epsilon_{\alpha^{\prime}\gamma} R_{nn^{\prime}}^{\gamma}}{\partial \epsilon_{\beta^{\prime}}} \Biggr) \epsilon_{\beta^{\prime}} \hat{\mathcal{I}}_{\alpha}^n \hat{\mathcal{I}}_{\beta}^{n^{\prime}} * - Indices renaming - :math:`n \rightarrow (\mu_1, \alpha_1)`, :math:`n^{\prime} \rightarrow (\mu_2, \alpha_2)`, :math:`\beta^{\prime} \rightarrow i_1`, :math:`\alpha \rightarrow i_2`, :math:`\beta \rightarrow i_3` * - :math:`C_3` - :math:`-\dfrac{1}{2}` * - :math:`V_{\mu_1, \mu_2, \mu_3; \alpha_1, \alpha_2, \alpha_3}^{i_1, i_2, i_3}` - .. math:: \sum_{\alpha^{\prime}\gamma=1,2,3} \Biggl( \dfrac{\partial \mathcal{J}_{i_2,i_3}}{\partial \epsilon_{i_1}} + \dfrac{\partial \mathcal{J}_{i_2,i_3}}{\partial R_{\mu_1,\mu_2;\alpha_1,\alpha_2}^{\alpha^{\prime}}} \dfrac{\partial \epsilon_{\alpha^{\prime}\gamma} R_{\mu_1,\mu_2;\alpha_1,\alpha_2}^{\gamma}}{\partial \epsilon_{i_1}} \Biggr) * - :math:`X_{\mu_1, \alpha_1}^{i_1}` - :math:`\epsilon_{i_1}` * - :math:`X_{\mu_2; \alpha_2}^{i_2}` - :math:`\hat{\mathcal{I}}_{i_2}^{\mu_2,\alpha_2}` * - :math:`X_{\mu_3; \alpha_3}^{i_3}` - :math:`\hat{\mathcal{I}}_{i_3}^{\mu_3,\alpha_3}` .. note:: Indices :math:`(\mu_1, \alpha_1)` have only one possible value, :math:`(\mu_1, \alpha_1) = \_1`.