.. _mapping-5_dipole-dipole: ********************************** Magnetic dipole-dipole interaction ********************************** Magnetic dipole-dipole interaction involves two entities. Therefore, it can be expressed as a :math:`\mathcal{H}_2` term. .. math:: \mathcal{H}_2 = C_2 \sum_{\substack{\mu_1, \mu_2,\\ \alpha_1, \alpha_2,\\ i_1, i_2}} V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2} The summary of the mapping for each code is given in the table below. .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_mcphase` - :ref:`zoo_spirit` - :ref:`zoo_sunny` * - :math:`\mathcal{H}` - .. math:: \mathcal{H} = - \dfrac{1}{2} \sum_{n\ne n^{\prime},\alpha\beta=1,2,3} \dfrac{\mu_0\mu_B^2 g_n g_{n^{\prime}}}{2\pi} \Biggl( 3\dfrac{(R_{n^{\prime}}^{\alpha} - R_{n}^{\alpha})(R_{n^{\prime}}^{\beta} - R_{n}^{\beta})}{|\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n}|^5} - \dfrac{\delta_{\alpha\beta}}{|\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n}|^3} \Biggr) \hat{J}_{\alpha}^n \hat{J}_{\beta}^{n^{\prime}} - .. math:: \mathcal{H} = \frac{1}{2}\frac{\mu_0}{4\pi} \sum_{i \neq j} \mu_i \mu_j \frac{(\vec{n}_i \cdot \hat{r}_{ij}) (\vec{n}_j\cdot\hat{r}_{ij}) - (\vec{n}_i \cdot \vec{n}_j)}{{r_{ij}}^3} - .. math:: \mathcal{H} = -\dfrac{\mu_0}{4\pi} \sum_{ij} \dfrac{ 3(\mu_i \cdot \hat{r}_{ij}) (\mu_j \cdot \hat{r}_{ij}) - \mu_i \cdot \mu_j }{r^3_{ij}} * - Renaming of indices - :math:`n \rightarrow (\mu_1, \alpha_1)`, :math:`n^{\prime} \rightarrow (\mu_2, \alpha_2)`, :math:`\alpha \rightarrow i_1`, :math:`\beta \rightarrow i_2` - :math:`i \rightarrow (\mu_1, \alpha_1)`, :math:`j \rightarrow (\mu_2, \alpha_2)` - :math:`i \rightarrow (\mu_1, \alpha_1)`, :math:`j \rightarrow (\mu_2, \alpha_2)` * - :math:`C_2` - :math:`-\dfrac{1}{2}` - :math:`\dfrac{1}{2}` - :math:`-1` * - :math:`V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2}` - .. math:: \dfrac{\mu_0\mu_B^2 g_{\mu_1, \alpha_1} g_{\mu_2, \alpha_2}}{2\pi} \Biggl( 3\dfrac{(R_{\mu_2, \alpha_2}^{i_1} - R_{\mu_1, \alpha_1}^{i_1})(R_{\mu_2, \alpha_2}^{i_2} - R_{\mu_1, \alpha_1}^{i_2})}{|\mathbf{R}_{\mu_2, \alpha_2} - \mathbf{R}_{\mu_1, \alpha_1}|^5} - \dfrac{\delta_{i_1, i_2}}{|\mathbf{R}_{\mu_2, \alpha_2} - \mathbf{R}_{\mu_1, \alpha_1}|^3} \Biggr) - .. math:: \frac{\mu_0}{4\pi}\mu_{\mu_1, \alpha_1} \mu_{\mu_2, \alpha_2} \frac{ \hat{r}_{\mu_1, \alpha_1; \mu_2, \alpha_2}^{i_1} \hat{r}_{\mu_1, \alpha_1; \mu_2, \alpha_2}^{i_2} - \delta_{i_1, i_2} } {r_{\mu_1, \alpha_1; \mu_2, \alpha_2}^3} - .. math:: \dfrac{\mu_0}{4\pi} \frac{ 3\hat{r}_{\mu_1, \alpha_1; \mu_2, \alpha_2}^{i_1} \hat{r}_{\mu_1, \alpha_1; \mu_2, \alpha_2}^{i_2} - \delta_{i_1, i_2} } {r_{\mu_1, \alpha_1; \mu_2, \alpha_2}^3} * - :math:`X_{\mu_1; \alpha_1}^{i_1}` - :math:`\hat{J}_{i_1}^{\mu_1; \alpha_1}` - :math:`n_{\mu_1, \alpha_1}^{i_1}` - :math:`\mu_{\mu_1, \alpha_1}^{i_1}` * - :math:`X_{\mu_2; \alpha_2}^{i_2}` - :math:`\hat{J}_{i_2}^{\mu_2; \alpha_2}` - :math:`n_{\mu_2, \alpha_2}^{i_2}` - :math:`\mu_{\mu_2, \alpha_2}^{i_2}`