.. _mapping-5_magneto-elastic: *************************** Magneto-elastic interaction *************************** Magneto-elastic interaction involves two entities. Therefore, it can be expressed as a :math:`\mathcal{H}_2` term. .. math:: \mathcal{H}_2 = C_2 \sum_{\substack{\mu_1, \mu_2,\\ \alpha_1, \alpha_2,\\ i_1, i_2}} V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2} The summary of the mapping for each code is given in the tables below. .. _mapping-5_magneto-elastic-1: Magneto-elastic interaction (1) =============================== .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_mcphase` * - :math:`\mathcal{H}` - .. math:: \hat{\mathcal{H}}_{ME1} = - \sum_n \sum_{\alpha=1,\dots,6, lm} G^{\alpha,l,m}_{\text{cfph}}(n) \epsilon_{\alpha} O_{lm}(\hat{\mathbf{J}}^n) * - Renaming of indices - :math:`n \rightarrow (\mu_1; \alpha_1)`, :math:`\alpha \rightarrow i_1`, :math:`(l,m) \rightarrow i_2` * - :math:`C_2` - :math:`-1` * - :math:`V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1,i_2}` - :math:`G^{i_1, i_2}_{\text{cfph}}(\mu_2,\alpha_2)\delta_{\mu_1, \mu_2}\delta_{\alpha_1, \alpha_2}` * - :math:`X_{\mu_1, \alpha_1}^{i_1}` - :math:`\epsilon_{i_1}` * - :math:`X_{\mu_2; \alpha_2}^{i_2}` - :math:`O_{i_2}(\hat{\mathbf{J}}^{\mu_2, \alpha_2})` .. note:: - Pair of indices :math:`(l,m)` run over the finite set of the integer pairs. Therefore, they can be enumerated with a single integer and mapped to the index :math:`i_2`. - Index :math:`i_1 = 1, \dots, 6`, while index :math:`i_2` runs over all pairs of integers :math:`(l,m)` of the original Hamiltonian. .. _mapping-5_magneto-elastic-2: Magneto-elastic interaction (2) =============================== .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_mcphase` * - :math:`\mathcal{H}` - .. math:: \hat{\mathcal{H}}_{ME2} = - \sum_{\substack{n