.. _mapping-5_zeeman: ****************** Zeeman interaction ****************** Zeeman interaction involves two entities. Therefore, it can be expressed as a :math:`\mathcal{H}_2` term. .. math:: \mathcal{H}_2 = C_2 \sum_{\mu_1, \mu_2; \alpha_1, \alpha_2; i_1, i_2} V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2} The summary of the mapping for each code is given in the table below. .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_magpie`, :ref:`zoo_spinw` - :ref:`zoo_mcphase` (v1) - :ref:`zoo_mcphase` (v2) - :ref:`zoo_spirit` - :ref:`zoo_sunny` * - :math:`\mathcal{H}` - .. math:: \mathcal{H} = \mu_B \mathbf{H} \sum_{i} g_i \mathbf{S}_i - .. math:: \hat{\mathcal{H}}_{Z-J} = - \sum_{n, \alpha=1,2,3} g_n \mu_B \hat{J}^{n}_{\alpha} H_{\alpha} - .. math:: \hat{\mathcal{H}}_{Z-LS} = - \sum_{n, \alpha=1,2,3} \mu_B \Bigl( 2 \hat{S}^n_{\alpha} + \hat{L}^n_{\alpha} \Bigr) H_{\alpha} - .. math:: \mathcal{H}_{\rm Zeeman} = -\sum_i \mu_i \vec{B}\cdot \vec{n}_i - .. math:: \mathcal{H} = \mu_B \mathbf{B} \sum_{i} g_i \mathbf{S}_i * - Renaming of indices - :math:`i \rightarrow (\mu_2, \alpha_2)`, :math:`i_1, i_2 = x, y, z` - :math:`n \rightarrow (\mu_2, \alpha_2)`, :math:`\alpha \rightarrow i_1` and :math:`\alpha \rightarrow i_2` - :math:`n \rightarrow (\mu_2, \alpha_2)`, :math:`\alpha \rightarrow i_1` and :math:`\alpha \rightarrow i_2` - :math:`i \rightarrow (\mu_2, \alpha_2)`, :math:`i_1, i_2 = x, y, z` - :math:`i \rightarrow (\mu_2, \alpha_2)`, :math:`i_1, i_2 = x, y, z` * - :math:`C_2` - 1 - -1 - -1 - -1 - 1 * - :math:`V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2}` - :math:`\mu_B g_{\mu_2, \alpha_2} \delta_{i_1, i_2} \delta_{\mu_1, \mu_2} \delta_{\alpha_1, \alpha_2}` - :math:`g_{\mu_2, \alpha_2} \mu_B \delta_{i_1, i_2} \delta_{\mu_1, \mu_2} \delta_{\alpha_1, \alpha_2}` - :math:`\mu_B \delta_{i_1, i_2} \delta_{\mu_1, \mu_2} \delta_{\alpha_1, \alpha_2}` - :math:`\mu_{\mu_2, \alpha_2} \delta_{i_1, i_2} \delta_{\mu_1, \mu_2} \delta_{\alpha_1, \alpha_2}` - :math:`\mu_B g_{\mu_2, \alpha_2} \delta_{i_1, i_2} \delta_{\mu_1, \mu_2} \delta_{\alpha_1, \alpha_2}` * - :math:`X_{\mu_1, \alpha_1}^{i_1}` - :math:`H^{i_1}` - :math:`H^{i_1}` - :math:`H^{i_1}` - :math:`B^{i_1}` - :math:`B^{i_1}` * - :math:`X_{\mu_2; \alpha_2}^{i_2}` - :math:`S_{\mu_2, \alpha_2}^{i_2}` - :math:`\hat{J}^{\mu_2, \alpha_2}_{i_2}` - :math:`2 \hat{S}^{\mu_2, \alpha_2}_{i_2} + \hat{L}^{\mu_2, \alpha_2}_{i_2}` - :math:`n_{\mu_2, \alpha_2}^{i_2}` - :math:`S_{\mu_2, \alpha_2}^{i_2}`