.. _mapping_crystal-field: ************* Crystal field ************* Crystal field terms involve one site and either one or :math:`k` entities (depending on the mapping procedure choice). Consider case with one entity as a preferred mapping scheme. Then, it can be expressed via the term :math:`\mathcal{H}_{1, 1}`. - :math:`k = 1` - :math:`l = 1` - :math:`m_{1,1} = 1` .. math:: \mathcal{H}_{1,1} = C_{1, 1} \sum_{\mu_1, \alpha_1, i_1} V_{\mu_1; \alpha_1}^{i_1} X_{\mu_1; \alpha_1}^{i_1} The summary of the mapping for each code is given in the table below. .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_mcphase` (v1) - :ref:`zoo_mcphase` (v2) - :ref:`zoo_sunny` * - :math:`\mathcal{H}` - .. math:: \hat{\mathcal{H}} = \sum_n \sum_{lm} B_l^m \hat{O}_{lm}(\mathbf{J}^n) - .. math:: \hat{\mathcal{H}} = \sum_n \sum_{lm} L_l^m(n) \hat{T}_{lm}^{n} - .. math:: \mathcal{H} = \sum_{i}\sum_{k,q} c_{i,k,q} \mathcal{O}_{k,q} (\mathbf{S}_{i}) * - Indices renaming - :math:`n \rightarrow (\mu_1, \alpha_1)`, :math:`(l,m) \rightarrow i_1` - :math:`n \rightarrow (\mu_1, \alpha_1)`, :math:`(l,m) \rightarrow i_1` - :math:`i \rightarrow (\mu_1, \alpha_1)`, :math:`(k,q) \rightarrow i_1` * - :math:`C_{1, 1}` - 1 - 1 - 1 * - :math:`V_{\mu_1; \alpha_1}^{i_1}` - :math:`B^{i_1}` - :math:`L^{i_1}(\mu_1, \alpha_1)` - :math:`c_{\mu_1, \alpha_1, i_1}` * - :math:`X_{\mu_1; \alpha_1}^{i_1}` - :math:`\hat{O}_{i_1}(\mathbf{J}^{\mu_1, \alpha_1})` - :math:`\hat{T}_{i_1}^{\mu_1, \alpha_1}` - :math:`\mathcal{O}_{i_1}(\mathbf{S}_{\mu_1, \alpha_1})` .. note:: - Pairs of indices :math:`(l,m)` or :math:`(k,q)` run over the finite set of the sets of two integers. Therefore, they can be enumerated with a single integer and mapped to the index :math:`i_1`. .. _mapping_crystal-field_ambiguity: Crystal field (ambiguity) ------------------------- Alternatively, the crystal field term can be mapped to the terms with one site and various amount of entities if one is to express the Stevens operators via the angular momentum/spin operators. Here is an example that illustrate it. Consider the term (in McPhase's notation) .. math:: \mathcal{H} = B_2^0 \hat{O}_{2}^0(\mathbf{J}^n) One can express the Stevens operators through angular momentum operator as .. math:: \mathcal{H} = B_2^0 \Bigl( 3 (\hat{J}_z^n)^2 - J(J+1) \Bigr) = E_{const} + 3B_2^0 \hat{J}_z^n \hat{J}_z^n By renaming indices as :math:`n \rightarrow (\mu_1, \alpha_1)` one can express the non-constant part as .. math:: \mathcal{H} = C_{2,1} \sum_{\mu_1, \alpha_1, i_1, i_2} V_{\mu_1; \alpha_1}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_1; \alpha_1}^{i_2} where .. math:: C_{2,1} &= 1 \\ V_{\mu_1; \alpha_1} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3B_2^0 \end{pmatrix} \\ X_{\mu_1; \alpha_1}^{i} &= \hat{J}_{i_1}^{\mu_1, \alpha_1}