.. _mapping_on-site-k4: ************************** On-site anisotropy (k = 4) ************************** On-site anisotropy of the fourth order involves one site and four entities. Therefore, it can be expressed via the term :math:`\mathcal{H}_{4, 1}`. - :math:`k = 4` - :math:`l = 1` - :math:`m_{4,1} = 1` .. math:: \mathcal{H}_{4,1} = C_{4, 1} \sum_{\mu_1, \alpha_1, i_1, i_2, i_3, i_4} V_{\mu_1; \alpha_1}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_1; \alpha_1}^{i_2} X_{\mu_1; \alpha_1}^{i_3} X_{\mu_1; \alpha_1}^{i_4} The summary of the mapping for each code is given in the table below. .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_spirit` * - :math:`\mathcal{H}` - .. math:: \mathcal{H}_{\rm cubic} = - \frac12 \sum_j K_j ([\vec{n}_j]_x^4 + [\vec{n}_j]_y^4 + [\vec{n}_j]_z^4) * - Index renaming - :math:`j \rightarrow (\mu_1, \alpha_1)` * - :math:`C_{4,1}` - :math:`- \frac12` * - :math:`V_{\mu_1; \alpha_1}^{i_1, i_2, i_3, i_4}` - .. math:: V_{\mu_1; \alpha_1}^{xxxx} = V_{\mu_1; \alpha_1}^{yyyy} = V_{\mu_1; \alpha_1}^{zzzz} = K_{\mu_1, \alpha_1} Other components are zero. * - :math:`X_{\mu_1; \alpha_1}^{i_1}` - :math:`n_{\mu_1; \alpha_1}^{i_1}`