.. _mapping_quadruplet: ********************** Quadruplet interaction ********************** In :ref:`zoo_spirit`, the quadruplet interaction term is written as .. math:: \mathcal{H}_{\rm quad} = - \sum_{ijkl} K_{ijkl} (\vec{n}_i \cdot \vec{n}_j)(\vec{n}_k \cdot \vec{n}_l) First, notice, that :math:`i \ne j` and :math:`k \ne l`, otherwise the Hamiltonian is constant. Therefore, only three cases are possible: - :math:`i = k` and :math:`j = l` (or equivalently :math:`i = l` and :math:`j = k`) This is a case of :ref:`mapping_biquadratic-exchange`. - :math:`i = k` and :math:`j \ne l` (or equivalently :math:`i = l` and :math:`j \ne k` or :math:`j = k` and :math:`i \ne l` or :math:`j = l` and :math:`i \ne k`) This is case 1. The Hamiltonian maps to the term of the general Hamiltonian with :math:`k = 4`, :math:`l = 4` (:math:`m_{4,4} = 3`). .. math:: \mathcal{H}_{4, 4} = C_{4, 4} \sum_{\substack{\mu_1, \mu_2, \mu_3, \\ \alpha_1, \alpha_2, \alpha_3, \\ i_1, i_2, i_3, i_4}} V_{\mu_1, \mu_2, \mu_3; \alpha_1, \alpha_2, \alpha_3}^{i_1, i_2, i_3, i_4} \cdot X_{\mu_1; \alpha_1}^{i_1} \cdot X_{\mu_1; \alpha_1}^{i_2} \cdot X_{\mu_2; \alpha_2}^{i_3} \cdot X_{\mu_3; \alpha_3}^{i_4} - :math:`i \ne k` and :math:`j \ne l` and :math:`i \ne l` and :math:`j \ne k` This is case 2. The Hamiltonian maps to the term of the general Hamiltonian with :math:`k = 4`, :math:`l = 5` (:math:`m_{4,5} = 4`). .. math:: \mathcal{H}_{4, 5} = C_{4, 5} \sum_{\substack{\mu_1, \mu_2, \mu_3, \mu_4, \\ \alpha_1, \alpha_2, \alpha_3, \alpha_4, \\ i_1, i_2, i_3, i_4}} V_{\mu_1, \mu_2, \mu_3, \mu_4; \alpha_1, \alpha_2, \alpha_3, \alpha_4}^{i_1, i_2, i_3, i_4} \cdot X_{\mu_1; \alpha_1}^{i_1} \cdot X_{\mu_2; \alpha_2}^{i_2} \cdot X_{\mu_3; \alpha_3}^{i_3} \cdot X_{\mu_4; \alpha_4}^{i_4} .. _mapping_quadruplet-case-1: Quadruplet interaction (case 1) ------------------------------- By expanding the dot product, one gets .. math:: \mathcal{H}_{\rm quad}^{\rm case \, 1} = - \sum_{\substack{\mu_1, \mu_2, \mu_3,\\ \alpha_1, \alpha_2, \alpha_3, \\ i_1, i_2, i_3, i_4}} K_{ijl}^{i_1, i_2, i_3, i_4} n_{i}^{i_1} n_{i}^{i_2} n_{j}^{i_3} n_{l}^{i_4} where the tensor :math:`K_{ijl}^{i_1, i_2, i_3, i_4}` is defined as .. math:: K_{ijil} &= K_{ijl}^{xxxx} = K_{ijl}^{yyyy} = K_{ijl}^{zzzz} \\ &= K_{ijl}^{xyxy} = K_{ijl}^{xzxz} = K_{ijl}^{yzyz} \\ &= K_{ijl}^{yxyx} = K_{ijl}^{zxzx} = K_{ijl}^{zyzy} \\ and all other components are zero. Then one renames the indices as :math:`i \rightarrow (\mu_1, \alpha_1)`, :math:`j \rightarrow (\mu_2, \alpha_2)`, :math:`l \rightarrow (\mu_3, \alpha_3)` and correspondence becomes clear .. math:: C_{4, 4} &= -1 \\ V_{\mu_1, \mu_2, \mu_3; \alpha_1, \alpha_2, \alpha_3}^{i_1, i_2, i_3, i_4} &\leftrightarrow K_{ijl}^{i_1, i_2, i_3, i_4} \\ X_{\mu_1; \alpha_1}^{i_1} &\leftrightarrow n_{i}^{i_1} \\ X_{\mu_2; \alpha_2}^{i_3} &\leftrightarrow n_{i}^{i_3} \\ X_{\mu_3; \alpha_3}^{i_4} &\leftrightarrow n_{j}^{i_4} \\ .. _mapping_quadruplet-case-2: Quadruplet interaction (case 2) ------------------------------- By expanding the dot product, one gets .. math:: \mathcal{H}_{\rm quad}^{\rm case \, 2} = - \sum_{\substack{\mu_1, \mu_2, \mu_3, \mu_4,\\ \alpha_1, \alpha_2, \alpha_3, \alpha_4, \\ i_1, i_2, i_3, i_4}} K_{ijkl}^{i_1, i_2, i_3, i_4} n_{i}^{i_1} n_{j}^{i_2} n_{k}^{i_3} n_{l}^{i_4} where the tensor :math:`K_{ijkl}^{i_1, i_2, i_3, i_4}` is defined as .. math:: K_{ijkl} &= K_{ijkl}^{xxxx} = K_{ijkl}^{yyyy} = K_{ijkl}^{zzzz} \\ &= K_{ijkl}^{xxyy} = K_{ijkl}^{xxzz} = K_{ijkl}^{yyzz} \\ &= K_{ijkl}^{yyxx} = K_{ijkl}^{zzxx} = K_{ijkl}^{zzyy} \\ and all other components are zero. Then one renames the indices as :math:`i \rightarrow (\mu_1, \alpha_1)`, :math:`j \rightarrow (\mu_2, \alpha_2)`, :math:`k \rightarrow (\mu_3, \alpha_3)`, :math:`l \rightarrow (\mu_4, \alpha_4)` and correspondence becomes clear .. math:: C_{4, 5} &= -1 \\ V_{\mu_1, \mu_2, \mu_3, \mu_4; \alpha_1, \alpha_2, \alpha_3, \alpha_4}^{i_1, i_2, i_3, i_4} &\leftrightarrow K_{ijkl}^{i_1, i_2, i_3, i_4} \\ X_{\mu_1; \alpha_1}^{i_1} &\leftrightarrow n_{i}^{i_1} \\ X_{\mu_2; \alpha_2}^{i_2} &\leftrightarrow n_{j}^{i_2} \\ X_{\mu_3; \alpha_3}^{i_3} &\leftrightarrow n_{k}^{i_3} \\ X_{\mu_4; \alpha_4}^{i_4} &\leftrightarrow n_{l}^{i_4} \\