.. _mapping_zeeman: ****************** Zeeman interaction ****************** Zeeman interaction involves two sites and two entities. Therefore, it can be expressed via the term :math:`\mathcal{H}_{1, 1}`. - :math:`k = 1` - :math:`l = 1` - :math:`m_{1,1} = 1` .. math:: \mathcal{H}_{1,1} = C_{1, 1} \sum_{\mu_1; \alpha_1; i_1} V_{\mu_1; \alpha_1}^{i_1} X_{\mu_1; \alpha_1}^{i_1} The summary of the mapping for each code is given in the table below. .. list-table:: :header-rows: 1 :stub-columns: 1 * - Code - :ref:`zoo_magpie`, :ref:`zoo_spinw` - :ref:`zoo_mcphase` (v1) - :ref:`zoo_mcphase` (v2) - :ref:`zoo_spirit` - :ref:`zoo_sunny` * - :math:`\mathcal{H}` - .. math:: \mathcal{H} = \mu_B \mathbf{H} \sum_{i} g_i \mathbf{S}_i - .. math:: \hat{\mathcal{H}}_{Z-J} = - \sum_{n, \alpha=1,2,3} g_n \mu_B \hat{J}^{n}_{\alpha} H_{\alpha} - .. math:: \hat{\mathcal{H}}_{Z-LS} = - \sum_{n, \alpha=1,2,3} \mu_B \Bigl( 2 \hat{S}^n_{\alpha} + \hat{L}^n_{\alpha} \Bigr) H_{\alpha} - .. math:: \mathcal{H}_{\rm Zeeman} = -\sum_i \mu_i \vec{B}\cdot \vec{n}_i - .. math:: \mathcal{H} = \mu_B \mathbf{B} \sum_{i} g_i \mathbf{S}_i * - Indices renaming - :math:`i \rightarrow (\mu_1, \alpha_1)`, :math:`i_1 = x, y, z` - :math:`n \rightarrow (\mu_1, \alpha_1)`, :math:`\alpha \rightarrow i_1` - :math:`n \rightarrow (\mu_1, \alpha_1)`, :math:`\alpha \rightarrow i_1` - :math:`i \rightarrow (\mu_1, \alpha_1)`, :math:`i_1 = x, y, z` - :math:`i \rightarrow (\mu_1, \alpha_1)`, :math:`i_1 = x, y, z` * - :math:`C_{1, 1}` - 1 - -1 - -1 - -1 - 1 * - :math:`V_{\mu_1; \alpha_1}^{i_1}` - :math:`\mu_B g_{\mu_1, \alpha_1} H^{i_1}` - :math:`g_{\mu_1, \alpha_1} \mu_B H_{i_1}` - :math:`\mu_B H_{i_1}` - :math:`\mu_{\mu_1, \alpha_1} B^{i_1}` - :math:`\mu_B g_{\mu_1, \alpha_1} B^{i_1}` * - :math:`X_{\mu_1; \alpha_1}^{i_1}` - :math:`S_{\mu_1, \alpha_1}^{i_1}` - :math:`\hat{J}^{\mu_1, \alpha_1}_{i_1}` - :math:`2 \hat{S}^{\mu_1, \alpha_1}_{i_1} + \hat{L}^{\mu_1, \alpha_1}_{i_1}` - :math:`n_{\mu_1, \alpha_1}^{i_1}` - :math:`S_{\mu_1, \alpha_1}^{i_1}`