.. _zoo_mcphase:
*******
McPhase
*******
========= ======================================================================
========= ======================================================================
Status Verified
Links `Web `_
Languages C++, Fortran, Perl, Java
========= ======================================================================
Spin Hamiltonian
================
The spin Hamiltonian is in general:
.. math::
\hat{\mathcal{H}}
=
\sum_{n=1}^{N}
\hat{\mathcal{H}}(n)
-
\dfrac{1}{2}
\sum_{n,n^{\prime},\alpha,\beta}
\mathcal{J}_{\alpha,\beta}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n})
\hat{\mathcal{I}}_{\alpha}^n
\hat{\mathcal{I}}_{\beta}^{n^{\prime}}
The first term :math:`\hat{\mathcal{H}}(n)` denotes the Hamiltonian of a
subsystem :math:`n` (e. g. an ion, or cluster of ions). The second term
describes a bilinear interaction between different subsystems through the
operators :math:`\hat{\mathcal{I}}_{\alpha}^n`, with :math:`\alpha = 1, 2, \dots, m`.
The operators :math:`\hat{\mathcal{H}}(n)` and :math:`\hat{\mathcal{I}}_{\alpha}^n`
act in the subspace :math:`n` of the Hilbert space, i. e.
:math:`[\hat{\mathcal{I}}_{\alpha}^n, \hat{\mathcal{I}}_{\alpha}^{n^{\prime}}] = 0`,
:math:`[\hat{\mathcal{H}}(n), \hat{\mathcal{I}}_{\alpha}^{n^{\prime}}] = 0`
and
:math:`[\hat{\mathcal{H}}(n), \hat{\mathcal{H}}(n^{\prime})] = 0`
for :math:`n \ne n^{\prime}`.
Next we give specific examples which fill the above expression with life.
Zeeman energy
-------------
When an external magnetic field is applied the term of the form
.. math::
\hat{\mathcal{H}}_{Z-J}(n)
=
-
\sum_{\alpha=1,2,3}
g_n
\mu_B
\hat{J}^{n}_{\alpha}
H_{\alpha}
where :math:`\hat{\mathbf{J}}^n` is a total angular momentum operator, is included.
Or the term of the form
.. math::
\hat{\mathcal{H}}_{Z-LS}(n)
=
-
\sum_{\alpha=1,2,3}
\mu_B
\Bigl(
2 \hat{S}^n_{\alpha} + \hat{L}^n_{\alpha}
\Bigr)
H_{\alpha}
where :math:`\hat{\mathbf{S}}^n` and :math:`\hat{\mathbf{L}}^n` are the (inverse)
spin and orbital angular momentum operators of the ion :math:`n`, respectively.
Note that by "external magnetic field :math:`\mathbf{H}`" we refer to the
magnetic field in the sample, which is the applied field (e. g. generated by a
coil) diminished by the demagnetizing tensor :math:`\overline{n}_{\text{demag}}`
times the magnetisation :math:`\mathbf{M}` of the sample, i. e.
:math:`\mathbf{H} = \mathbf{H}_{\text{applied}} - \overline{n}_{\text{demag}} \mathbf{M}`,
e. g. for a spherical sample :math:`\overline{n}_{\text{demag}} = 1/3\,\overline{I}`,
where :math:`\overline{I}` is the identity matrix. The unit of :math:`\mathbf{H}`
is usually chosen to be Tesla, which actually refers to the quantity
:math:`\mu_0 \mathbf{H}` (in SI units).
Magnetic exchange
-----------------
Isotropic magnetic exchange interaction (e. g. Heisenberg exchange) is written as
.. math::
\hat{\mathcal{H}}_{X-J}
=
-
\dfrac{1}{2}
\sum_{nn^{\prime}, \alpha\beta=1,2,3}
\mathcal{J}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n})
\hat{\mathcal{I}}_{\alpha}^n
\hat{\mathcal{I}}_{\beta}^{n^{\prime}}
where the operators are understood as
:math:`\hat{\mathcal{I}}_{1} \leftrightarrow \hat{J}_x`,
:math:`\hat{\mathcal{I}}_{2} \leftrightarrow \hat{J}_y`,
:math:`\hat{\mathcal{I}}_{3} \leftrightarrow \hat{J}_z`.
Intermediate coupling
---------------------
For some rare earth ions and for transition metals or actinides it is necessary
to include more single-ion ion states with different L, S into the calculation.
Two-ion intermediate interaction can be written as
.. math::
\hat{\mathcal{H}}_{IC}
=
-
\dfrac{1}{2}
\sum_{nn^{\prime},\alpha\beta=1,\dots,6}
\mathcal{J}_{\alpha\beta}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n})
\hat{\mathcal{I}}_{\alpha}^n
\hat{\mathcal{I}}_{\beta}^{n^{\prime}}
where the operators are understood as
:math:`\hat{\mathcal{I}}_{1} \leftrightarrow \hat{S}_x`,
:math:`\hat{\mathcal{I}}_{2} \leftrightarrow \hat{S}_y`,
:math:`\hat{\mathcal{I}}_{3} \leftrightarrow \hat{S}_z`,
:math:`\hat{\mathcal{I}}_{4} \leftrightarrow \hat{L}_x`,
:math:`\hat{\mathcal{I}}_{5} \leftrightarrow \hat{L}_y`,
:math:`\hat{\mathcal{I}}_{6} \leftrightarrow \hat{L}_z`.
Dzyaloshinskii-Moriya interaction
---------------------------------
DMI can be written in the form of the two-ion interaction as
.. math::
\hat{\mathcal{H}}_{DMI}
=
-
\dfrac{1}{2}
\sum_{nn^{\prime},\alpha\beta=1,2,3}
\mathcal{J}_{\alpha\beta}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n})
\hat{\mathcal{I}}_{\alpha}^n
\hat{\mathcal{I}}_{\beta}^{n^{\prime}}
where the operators are understood as
:math:`\hat{\mathcal{I}}_{1} \leftrightarrow \hat{J}_x`,
:math:`\hat{\mathcal{I}}_{2} \leftrightarrow \hat{J}_y`,
:math:`\hat{\mathcal{I}}_{3} \leftrightarrow \hat{J}_z` and
:math:`\mathcal{J}_{\alpha\beta}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n})` is a
skew-symmetric matrix.
Classical dipole dipole interaction
-----------------------------------
Classical magnetic dipole-dipole interaction can be written in the form of the
two-ion interaction with the matrix parameter
.. math::
\hat{\mathcal{H}}_{CDD}
=
-
\dfrac{1}{2}
\sum_{n\ne n^{\prime},\alpha\beta=1,2,3}
\mathcal{J}_{\alpha\beta}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n})
\hat{\mathcal{I}}_{\alpha}^n
\hat{\mathcal{I}}_{\beta}^{n^{\prime}}
where the operators are understood as
:math:`\hat{\mathcal{I}}_{1} \leftrightarrow \hat{J}_x`,
:math:`\hat{\mathcal{I}}_{2} \leftrightarrow \hat{J}_y`,
:math:`\hat{\mathcal{I}}_{3} \leftrightarrow \hat{J}_z` and
.. math::
\mathcal{J}_{\alpha\beta}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n})
=
\dfrac{\mu_0\mu_B^2 g_n g_{n^{\prime}}}{2\pi}
\Biggl(
3\dfrac{(R_{n^{\prime}}^{\alpha} - R_{n}^{\alpha})(R_{n^{\prime}}^{\beta} - R_{n}^{\beta})}{|\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n}|^5}
-
\dfrac{\delta_{\alpha\beta}}{|\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n}|^3}
\Biggr)
Crystal field
-------------
Single-ion crystal field is written with Stevens operators as
.. math::
\hat{\mathcal{H}}_{CF1-S}(n)
=
\sum_{lm}
B_l^m
\hat{O}_{lm}(\mathbf{J}^n)
or with Wybourne operators :math:`\hat{T}_{lm}^n` and Wybourne parameters
:math:`L_l^m` as
.. math::
\hat{\mathcal{H}}_{CF1-W}(n)
=
\sum_{lm}
L_l^m(n)
\hat{T}_{lm}^{n}
where :math:`\hat{T}_{lm}^n` is an operator equivalents of real valued spherical
harmonic functions
.. math::
\hat{T}_{l0}
&=
\sqrt{4\pi/(2l+1)}
\sum_i
Y_{l0}(\Omega_{i_n}),\\
\hat{T}_{l,\pm|m|}
&=
\sqrt{4\pi/(2l+1)}
\sum_i
\sqrt{\pm 1}
[Y_{l,-|m|}(\Omega_{i_n}) \pm (-1)^m Y_{l,|m|}(\Omega_{i_n})]
for the ion :math:`n`, where index :math:`i_n` runs over all electrons in the
open shell of an ion (d, f). Two-ion crystal field can be written with the
Stevens operators as
.. math::
\hat{\mathcal{H}}_{CF2-S}
=
-\dfrac{1}{2}
\sum_{nn^{\prime}}
\sum_{ll^{\prime}}
\sum_{mm^{\prime}}
K_{ll^{\prime}}^{mm^{\prime}}(nn^{\prime})
\hat{O}_{lm}(\mathbf{J}^n)
\hat{O}_{l^{\prime}m^{\prime}}(\mathbf{J}^{n^{\prime}})
or with the Wybourne operators as
.. math::
\hat{\mathcal{H}}_{CF2-W}
=
-
\dfrac{1}{2}
\sum_{nn^{\prime}}
\Biggl[
\sum_{kk^{\prime}}
\sum_{qq^{\prime}}
\mathcal{K}_{kk^{\prime}}^{qq^{\prime}}(nn^{\prime})
\hat{T}_{kq}^n
\hat{T}_{k^{\prime}q^{\prime}}^{n^{\prime}}
\Biggr]
where operators are defined as :math:`\hat{\mathcal{I}}_{\alpha}^n \leftrightarrow \hat{O}_{lm}(\mathbf{J}^n)`
or :math:`\hat{\mathcal{I}}_{\alpha}^n \leftrightarrow \hat{T}_{kq}^n` and
index :math:`\alpha` runs over :math:`m` pairs of :math:`(l,m)` or :math:`(k,q)`
respectively. Interaction parameters are either
:math:`\mathcal{J}_{\alpha,\beta}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n}) \leftrightarrow K_{ll^{\prime}}^{mm^{\prime}}(nn^{\prime})`
or
:math:`\mathcal{J}_{\alpha,\beta}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n}) \leftrightarrow \mathcal{K}_{kk^{\prime}}^{qq^{\prime}}(nn^{\prime})`,
where index :math:`\beta` runs over :math:`m` pairs of :math:`(l^{\prime},m^{\prime})` or :math:`(k^{\prime},q^{\prime})`
respectively.
Exchange striction
------------------
.. math::
\hat{\mathcal{H}}_{XS}
=
-
\dfrac{1}{2}
\sum_{\substack{nn^{\prime},\alpha\beta\alpha^{\prime}\gamma=1,2,3\\\beta^{\prime}=1-6}}
\Biggl(
\dfrac{\partial \mathcal{J}_{\alpha\beta}}{\partial \epsilon_{\beta^{\prime}}}
+
\dfrac{\partial \mathcal{J}_{\alpha\beta}}{\partial R_{nn^{\prime}}^{\alpha^{\prime}}}
\dfrac{\partial \epsilon_{\alpha^{\prime}\gamma} R_{nn^{\prime}}^{\gamma}}{\partial \epsilon_{\beta^{\prime}}}
\Biggr)
\epsilon_{\beta^{\prime}}
\hat{\mathcal{I}}_{\alpha}^n
\hat{\mathcal{I}}_{\beta}^{n^{\prime}}
Phonons
-------
A three dimensional Einstein oscillator (for atom :math:`n`) in a solid can be
described by the following Hamiltonian
.. math::
\hat{\mathcal{H}}_{P1}(n)
=
\dfrac{a_0^2\hat{\mathbf{w}}_n^2}{2m_n}
-
\dfrac{1}{2}
\sum_{\alpha\beta=1,2,3}
\hat{u}_{\alpha}^n
K(nn)
\hat{u}_{\beta}^n
-
\sum_{\alpha=1,2,3}
F_{\alpha}(n)
\hat{u}_{\alpha}^n
Here :math:`\hat{\mathbf{u}}` is the dimensionless displacement vector
:math:`\hat{\mathbf{u}} = \hat{\mathbf{P}}_n / a_0 = \Delta \hat{\mathbf{r}}_n / a_0`,
with the Bohr radius :math:`a_0 = 0.5219` Angstrom), :math:`m_n` the mass of the atom
:math:`n`, :math:`\hat{\mathbf{w}}_n = d\hat{\mathbf{u}}_n/dt = \mathbf{p}_n / a_0`
the conjugate momentum to :math:`\hat{\mathbf{u}}_n` and :math:`\overline{K}(nn)`
the matrix describing the restoring force.
External force :math:`\mathbf{F}(n)` can correspond to the electric field
:math:`\mathbf{E}_{\text{el}}`, i. e. :math:`\mathbf{F}(n) = q_n \mathbf{E}_{\text{el}} a_0`,
where Bohr radius :math:`a_0` is included in order to yield
:math:`\mathbf{F}_{\text{el}}(n)` in units of meV.
Coupling such oscillators leads to the Hamiltonian
.. math::
\hat{\mathcal{H}}_{P2}
=
-
\dfrac{1}{2}
\sum_{n\ne n^{\prime},\alpha\beta=1,2,3}
\hat{u}_{\alpha}^n
K_{\alpha\beta}(nn^{\prime})
\hat{u}_{\beta}^{n^{\prime}}
where operators are defined as :math:`\hat{\mathcal{I}}_{\alpha}^n \leftrightarrow \hat{\mathbf{u}}^n_{\alpha}`
and interaction parameters are
:math:`\mathcal{J}_{\alpha,\beta}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n}) \leftrightarrow K_{\alpha\beta}(nn^{\prime})`.
Single-ion electrostatic and spin-orbit interaction
---------------------------------------------------
.. math::
\hat{\mathcal{H}}_{E-SO}(n)
=
\sum_{i_n=1}^{\nu_n}
\Biggl[
\dfrac{(p_{i_n})^2}{2m_e}
-
\dfrac{Z_n e^2}{4\pi \epsilon_0 |\mathbf{r}_{i_n} - \mathbf{R}_n|}
+
\zeta_n
\mathbf{l}^{i_n}
\cdot
\mathbf{s}^{i_n}
\Biggr]
+
\sum_{i_n > j_n=1}^{\nu_n}
\dfrac{e^2}{4\pi \epsilon_0 |\mathbf{r}_{i_n} - \mathbf{r}_{j_n}|}
Here :math:`\nu_n,Z_n` and :math:`\mathbf{R}_n` denote the number of electrons,
the charge of the nucleus and the position of the ion number :math:`n`,
respectively, for each electron being :math:`p` the momentum, :math:`m_e`
the mass, :math:`e` the charge and :math:`\mathbf{r}` the location. Spin orbit
coupling is written in terms of the orbital momentum :math:`\mathbf{l}` and spin
:math:`\mathbf{s}` of the individual electrons.
Magneto-elastic interaction
---------------------------
.. math::
\hat{\mathcal{H}}_{ME1}(n)
=
-
\sum_{\substack{\alpha=1,\dots,6,\\\gamma=1,2,3}}
G^{\alpha\gamma}_{\text{mix}}(n)
\epsilon_{\alpha}
\hat{u}_n^{\gamma}
-
\sum_{\alpha=1,\dots,6, lm}
G^{\alpha\gamma}_{\text{cfph}}(n)
\epsilon_{\alpha}
O_{lm}(\hat{\mathbf{J}}^n)
and
.. math::
\hat{\mathcal{H}}_{ME2}
=
-
\sum_{\substack{n