.. _zoo_tb2j: ***** TB2J ***** ========= ====================================================================== ========= ====================================================================== Status Verified Links `Docs `_, `DOI `_, `Github `_ Languages Python ========= ====================================================================== Spin Hamiltonian ================ TB2J calculates parameters for the following bilinear spin Hamiltonian: .. math:: \mathcal{H} = -\sum_{i \neq j} \mathbf{S}_i \cdot \mathcal{J}_{ij} \cdot \mathbf{S}_j - \sum_i \mathbf{S}_i \cdot A_i \cdot \mathbf{S}_i where :math:`\mathbf{S}_i` is a classical spin vector at magnetic site :math:`i` **normalized to 1**; :math:`\mathcal{J}_{ij}` is a 3x3 exchange tensor, that can be decomposed into physical components 1. **Isotropic Heisenberg Exchange** .. math:: H_{\text{iso}} = -\sum_{i \neq j} J_{ij} (\mathbf{S}_i \cdot \mathbf{S}_j) 2. **Dzyaloshinskii-Moriya Interaction** .. math:: H_{\text{DM}} = -\sum_{i \neq j} \mathbf{D}_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j) 3. **Symmetric Anisotropic Exchange** .. math:: H_{\text{sym-ani}} = -\sum_{i \neq j} \mathbf{S}_i \cdot \mathcal{J}^{\text{ANI}}_{ij} \cdot \mathbf{S}_j where :math:`\mathcal{J}^{\text{ANI}}_{ij}` is the traceless symmetric part of :math:`\mathcal{J}_{ij}`. Convention ========== ================= === ================= === Spin normalized yes Multiple counting yes ================= ===