.. _zoo_tb2j:
*****
TB2J
*****
========= ======================================================================
========= ======================================================================
Status Verified
Links `Docs `_,
`DOI `_,
`Github `_
Languages Python
========= ======================================================================
Spin Hamiltonian
================
TB2J calculates parameters for the following bilinear spin Hamiltonian:
.. math::
\mathcal{H}
=
-\sum_{i \neq j}
\mathbf{S}_i
\cdot
\mathcal{J}_{ij}
\cdot
\mathbf{S}_j
-
\sum_i
\mathbf{S}_i
\cdot A_i
\cdot \mathbf{S}_i
where :math:`\mathbf{S}_i` is a classical spin vector at magnetic site :math:`i`
**normalized to 1**; :math:`\mathcal{J}_{ij}` is a 3x3 exchange tensor, that can
be decomposed into physical components
1. **Isotropic Heisenberg Exchange**
.. math::
H_{\text{iso}}
=
-\sum_{i \neq j}
J_{ij}
(\mathbf{S}_i \cdot \mathbf{S}_j)
2. **Dzyaloshinskii-Moriya Interaction**
.. math::
H_{\text{DM}}
=
-\sum_{i \neq j}
\mathbf{D}_{ij}
\cdot
(\mathbf{S}_i \times \mathbf{S}_j)
3. **Symmetric Anisotropic Exchange**
.. math::
H_{\text{sym-ani}}
=
-\sum_{i \neq j}
\mathbf{S}_i
\cdot
\mathcal{J}^{\text{ANI}}_{ij}
\cdot
\mathbf{S}_j
where :math:`\mathcal{J}^{\text{ANI}}_{ij}` is the traceless symmetric part
of :math:`\mathcal{J}_{ij}`.
Convention
==========
================= ===
================= ===
Spin normalized yes
Multiple counting yes
================= ===