Bilinear exchange

Bilinear exchange involves two entities. Therefore, it can be expressed via the term \(\mathcal{H}_2\).

\[\begin{split}\mathcal{H}_2 = C_2 \sum_{\substack{\mu_1, \mu_2,\\ \alpha_1, \alpha_2,\\ i_1, i_2}} V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2}\end{split}\]

The summary of the mapping for each code is given in the table below.

Code

GROGU

juKKR, TB2J

Magpie

McPhase

SpinW

Spirit

Sunny

\(\mathcal{H}\)

\[\frac{1}{2} \sum_{i\neq j} \boldsymbol{e}_{i} \cdot \boldsymbol{J}_{ij} \cdot \boldsymbol{e}_{j}\]
\[- \sum_{i\ne j} \mathbf{S}_{i} \cdot \boldsymbol{J}_{ij} \cdot \mathbf{S}_{j}\]
\[\sum_{i \neq j} J_{ij} \, \mathbf{S}_i \cdot \mathbf{S}_j + \sum_{i \neq j} \mathbf{D}_{ij} \cdot \left( \mathbf{S}_i \times \mathbf{S}_j \right)\]
\[- \dfrac{1}{2} \sum_{nn^{\prime}, \alpha\beta} \mathcal{J}_{\alpha\beta}(\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n}) \hat{\mathcal{I}}_{\alpha}^n \hat{\mathcal{I}}_{\beta}^{n^{\prime}}\]
\[\sum_{i \neq j} \mathbf{S}_i J_{ij} \mathbf{S}_j\]
\[-\frac{1}{2} \sum_{i\neq j} J_{ij}^{\alpha\beta} n_i^\alpha n_j^\beta\]
\[\sum_{i<j} \mathbf{S}_{j} J_{ij} \mathbf{S}_{j}\]

Indices renaming

\(i \rightarrow (\mu_1, \alpha_1)\), \(j \rightarrow (\mu_2, \alpha_2)\)

\(i \rightarrow (\mu_1, \alpha_1)\), \(j \rightarrow (\mu_2, \alpha_2)\)

\(i \rightarrow (\mu_1, \alpha_1)\), \(j \rightarrow (\mu_2, \alpha_2)\)

\(n \rightarrow (\mu_1, \alpha_1)\), \(n^{\prime} \rightarrow (\mu_2, \alpha_2)\), \(\alpha \rightarrow i_1\), \(\beta \rightarrow i_2\)

\(i \rightarrow (\mu_1, \alpha_1)\), \(j \rightarrow (\mu_2, \alpha_2)\)

\(i \rightarrow (\mu_1, \alpha_1)\), \(j \rightarrow (\mu_2, \alpha_2)\), \(\alpha \rightarrow i_1\), \(\beta \rightarrow i_2\)

\(i \rightarrow (\mu_1, \alpha_1)\), \(j \rightarrow (\mu_2, \alpha_2)\)

\(C_2\)

\(\dfrac{1}{2}\)

\(-1\)

\(1\)

\(-\dfrac{1}{2}\)

\(1\)

\(-\dfrac{1}{2}\)

\(1\)

\(V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2}\)

\(J_{\mu_1, \alpha_1; \mu_2, \alpha_2}^{i_1, i_2}\)

\(J_{\mu_1, \alpha_1; \mu_2, \alpha_2}^{i_1, i_2}\)

\(J_{\mu_1, \alpha_1; \mu_2, \alpha_2}^{i_1, i_2} + \sum_{i_3} D_{\mu_1, \alpha_1; \mu_2, \alpha_2}^{i_3} e_{i_1, i_2, i_3}\)

\(\mathcal{J}^{i_1,i_2}(\mathbf{R}_{\mu_2, \alpha_2} - \mathbf{R}_{\mu_1, \alpha_1})\)

\(J_{\mu _1, \alpha_1; \mu_2, \alpha_2}^{i_1, i_2}\)

\(J_{\mu_1, \alpha_1; \mu_2, \alpha_2}^{i_1, i_2}\)

\(J_{\mu_1, \alpha_1; \mu_2, \alpha_2}^{i_1, i_2}\)

\(X_{\mu_1; \alpha_1}^{i_1}\)

\(e_{\mu_1, \alpha_1}^{i_1}\)

\(S_{\mu_1, \alpha_1}^{i_1}\)

\(S_{\mu_1, \alpha_1}^{i_1}\)

\(\hat{\mathcal{I}}^{\mu_1; \alpha_1}_{i_1}\)

\(S_{\mu_1, \alpha_1}^{i_1}\)

\(n_{\mu_1, \alpha_1}^{i_1}\)

\(S_{\mu_1, \alpha_1}^{i_1}\)

\(X_{\mu_2; \alpha_2}^{i_2}\)

\(e_{\mu_2, \alpha_2}^{i_2}\)

\(S_{\mu_2, \alpha_2}^{i_2}\)

\(S_{\mu_2, \alpha_2}^{i_2}\)

\(\hat{\mathcal{I}}^{\mu_2; \alpha_2}_{i_2}\)

\(S_{\mu_2, \alpha_2}^{i_2}\)

\(n_{\mu_2, \alpha_2}^{i_2}\)

\(S_{\mu_2, \alpha_2}^{i_2}\)

Note

  • Magpie

    \(e_{i_2, i_3, i_1}\) is the Levi-Civita symbol.

  • McPhase

    Indices \(i_1, i_2\) run either over three or six components, as the operators \(\hat{\mathcal{I}}_{\alpha}^n\) are interpreted either as

    \[\begin{split}\begin{pmatrix} \hat{\mathcal{I}}_1^n \\ \hat{\mathcal{I}}_2^n \\ \hat{\mathcal{I}}_3^n \end{pmatrix} = \begin{pmatrix} \hat{J}_x^n \\ \hat{J}_y^n \\ \hat{J}_z^n \end{pmatrix}\end{split}\]

    or

    \[\begin{split}\begin{pmatrix} \hat{\mathcal{I}}_1^n \\ \hat{\mathcal{I}}_2^n \\ \hat{\mathcal{I}}_3^n \\ \hat{\mathcal{I}}_4^n \\ \hat{\mathcal{I}}_5^n \\ \hat{\mathcal{I}}_6^n \end{pmatrix} = \begin{pmatrix} \hat{S}_x^n \\ \hat{S}_y^n \\ \hat{S}_z^n \\ \hat{L}_x^n \\ \hat{L}_y^n \\ \hat{L}_z^n \end{pmatrix}\end{split}\]