Zeeman interaction

Zeeman interaction involves two sites and two entities. Therefore, it can be expressed via the term \(\mathcal{H}_{1, 1}\).

\[\mathcal{H}_{1, 1} = C_{1, 1} \sum_{\mu_1; \alpha_1; j_1, i_1} V_{1; \mu_1; \alpha_1}^{j_1, i_1} Y_{1}^{j_1} X_{\mu_1; \alpha_1}^{i_1}\]

The summary of the mapping for each code is given in the table below.

Code

Magpie, SpinW

McPhase (v1)

McPhase (v2)

Spirit

Sunny

\(\mathcal{H}\)

\[\mathcal{H} = \mu_B \mathbf{H} \sum_{i} g_i \mathbf{S}_i\]
\[\hat{\mathcal{H}}_{Z-J} = - \sum_{n, \alpha=1,2,3} g_n \mu_B \hat{J}^{n}_{\alpha} H_{\alpha}\]
\[\hat{\mathcal{H}}_{Z-LS} = - \sum_{n, \alpha=1,2,3} \mu_B \Bigl( 2 \hat{S}^n_{\alpha} + \hat{L}^n_{\alpha} \Bigr) H_{\alpha}\]
\[\mathcal{H}_{\rm Zeeman} = -\sum_i \mu_i \vec{B}\cdot \vec{n}_i\]
\[\mathcal{H} = \mu_B \mathbf{B} \sum_{i} g_i \mathbf{S}_i\]

Indices renaming

\(i \rightarrow (\mu_1, \alpha_1)\), \(i_1, j_1 = x, y, z\)

\(n \rightarrow (\mu_1, \alpha_1)\), \(\alpha \rightarrow i_1\) and \(\alpha \rightarrow j_1\)

\(n \rightarrow (\mu_1, \alpha_1)\), \(\alpha \rightarrow i_1\) and \(\alpha \rightarrow j_1\)

\(i \rightarrow (\mu_1, \alpha_1)\), \(i_1, j_1 = x, y, z\)

\(i \rightarrow (\mu_1, \alpha_1)\), \(i_1, j_1 = x, y, z\)

\(C_{1, 1}\)

1

-1

-1

-1

1

\(V_{1; \mu_1; \alpha_1}^{j_1, i_1}\)

\(\mu_B g_{\mu_1, \alpha_1} \delta_{j_1, i_1}\)

\(g_{\mu_1, \alpha_1} \mu_B \delta_{j_1, i_1}\)

\(\mu_B \delta_{j_1, i_1}\)

\(\mu_{\mu_1, \alpha_1} \delta_{j_1, i_1}\)

\(\mu_B g_{\mu_1, \alpha_1} \delta_{j_1, i_1}\)

\(Y_{1}^{j_1}\)

\(H^{j_1}\)

\(H^{j_1}\)

\(H^{j_1}\)

\(B^{j_1}\)

\(B^{j_1}\)

\(X_{\mu_1; \alpha_1}^{i_1}\)

\(S_{\mu_1, \alpha_1}^{i_1}\)

\(\hat{J}^{\mu_1, \alpha_1}_{i_1}\)

\(2 \hat{S}^{\mu_1, \alpha_1}_{i_1} + \hat{L}^{\mu_1, \alpha_1}_{i_1}\)

\(n_{\mu_1, \alpha_1}^{i_1}\)

\(S_{\mu_1, \alpha_1}^{i_1}\)