Biquadratic exchange

Bilinear exchange involves two sites and four entities (two entities per site). Therefore, it can be expressed via the term \(\mathcal{H}_{4, 3}\).

  • \(k = 4\)

  • \(l = 3\)

  • \(m_{4,3} = 2\)

\[\begin{split}\mathcal{H}_{4,3} = C_{4, 3} \sum_{\substack{\mu_1, \mu_2,\\ \alpha_1, \alpha_2,\\ i_1, i_2, i_3, i_4}} V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2, i_3, i_4} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_1; \alpha_1}^{i_2} X_{\mu_2; \alpha_2}^{i_3} X_{\mu_2; \alpha_2}^{i_4}\end{split}\]

The summary of the mapping for each code is given in the table below.

Code

SpinW

Spirit

\(\mathcal{H}\)

\[\mathcal{H} = \sum_{i \neq j} B (\mathbf{S}_i \cdot \mathbf{S}_j)^2\]
\[\mathcal{H}_{\rm quad} = - \sum_{ij} K_{ij} (\vec{n}_i \cdot \vec{n}_j)^2\]

Indices renaming

\(i \rightarrow (\mu_1, \alpha_1)\), \(j \rightarrow (\mu_2, \alpha_2)\)

\(i \rightarrow (\mu_1, \alpha_1)\), \(j \rightarrow (\mu_2, \alpha_2)\)

\(C_{4, 3}\)

1

-1

\(V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2, i_3, i_4}\)

\(B\) if \((i_1, i_2, i_3, i_4) \in \mathcal{K}\) and 0 otherwise.

\(K_{\mu_1, \mu_2; \alpha_1, \alpha_2}\) if \((i_1, i_2, i_3, i_4) \in \mathcal{K}\) and 0 otherwise.

\(X_{\mu_1; \alpha_1}^{i_1}\)

\(S_{\mu_1; \alpha_1}^{i_1}\)

\(n_{\mu_1; \alpha_1}^{i_1}\)

\(X_{\mu_2; \alpha_2}^{i_3}\)

\(S_{\mu_2; \alpha_2}^{i_3}\)

\(n_{\mu_2; \alpha_2}^{i_3}\)

Note

  • \(\mathcal{K} = \{(x,x,x,x), (y,y,y,y), (z,z,z,z), (x,y,x,y), (x,z,x,z), (y,z,y,z), (y,x,y,x), (z,x,z,x), (z,y,z,y)\}\)

  • Spirit

    Spirit includes more general Hamiltonian that is called "quadruplet interaction"

    \[\mathcal{H}_{\rm quad} = - \sum_{ijkl} K_{ijkl} (\vec{n}_i \cdot \vec{n}_j)(\vec{n}_k \cdot \vec{n}_l)\]

    in the case \(i = k\) and \(j = l\) (or, equivalently, \(i = l\) and \(j = k\)) this interaction describe a biquadratic exchange. Other cases are considered in the page Quadruplet interaction.