On-site anisotropy (k = 4)

On-site anisotropy of the fourth order involves one site and four entities. Therefore, it can be expressed via the term \(\mathcal{H}_{4, 1}\).

  • \(k = 4\)

  • \(l = 1\)

  • \(m_{4,1} = 1\)

\[\mathcal{H}_{4,1} = C_{4, 1} \sum_{\mu_1, \alpha_1, i_1, i_2, i_3, i_4} V_{\mu_1; \alpha_1}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_1; \alpha_1}^{i_2} X_{\mu_1; \alpha_1}^{i_3} X_{\mu_1; \alpha_1}^{i_4}\]

The summary of the mapping for each code is given in the table below.

Code

Spirit

\(\mathcal{H}\)

\[\mathcal{H}_{\rm cubic} = - \frac12 \sum_j K_j ([\vec{n}_j]_x^4 + [\vec{n}_j]_y^4 + [\vec{n}_j]_z^4)\]

Index renaming

\(j \rightarrow (\mu_1, \alpha_1)\)

\(C_{4,1}\)

\(- \frac12\)

\(V_{\mu_1; \alpha_1}^{i_1, i_2, i_3, i_4}\)

\[V_{\mu_1; \alpha_1}^{xxxx} = V_{\mu_1; \alpha_1}^{yyyy} = V_{\mu_1; \alpha_1}^{zzzz} = K_{\mu_1, \alpha_1}\]

Other components are zero.

\(X_{\mu_1; \alpha_1}^{i_1}\)

\(n_{\mu_1; \alpha_1}^{i_1}\)