Magnetic dipole-dipole interaction

Magnetic dipole-dipole interaction involves two entities. Therefore, it can be expressed as a \(\mathcal{H}_2\) term.

\[\begin{split}\mathcal{H}_2 = C_2 \sum_{\substack{\mu_1, \mu_2,\\ \alpha_1, \alpha_2,\\ i_1, i_2}} V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2}\end{split}\]

The summary of the mapping for each code is given in the table below.

Code

McPhase

Spirit

Sunny

\(\mathcal{H}\)

\[\mathcal{H} = - \dfrac{1}{2} \sum_{n\ne n^{\prime},\alpha\beta=1,2,3} \dfrac{\mu_0\mu_B^2 g_n g_{n^{\prime}}}{2\pi} \Biggl( 3\dfrac{(R_{n^{\prime}}^{\alpha} - R_{n}^{\alpha})(R_{n^{\prime}}^{\beta} - R_{n}^{\beta})}{|\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n}|^5} - \dfrac{\delta_{\alpha\beta}}{|\mathbf{R}_{n^{\prime}} - \mathbf{R}_{n}|^3} \Biggr) \hat{J}_{\alpha}^n \hat{J}_{\beta}^{n^{\prime}}\]
\[\mathcal{H} = \frac{1}{2}\frac{\mu_0}{4\pi} \sum_{i \neq j} \mu_i \mu_j \frac{(\vec{n}_i \cdot \hat{r}_{ij}) (\vec{n}_j\cdot\hat{r}_{ij}) - (\vec{n}_i \cdot \vec{n}_j)}{{r_{ij}}^3}\]
\[\mathcal{H} = -\dfrac{\mu_0}{4\pi} \sum_{ij} \dfrac{ 3(\mu_i \cdot \hat{r}_{ij}) (\mu_j \cdot \hat{r}_{ij}) - \mu_i \cdot \mu_j }{r^3_{ij}}\]

Renaming of indices

\(n \rightarrow (\mu_1, \alpha_1)\), \(n^{\prime} \rightarrow (\mu_2, \alpha_2)\), \(\alpha \rightarrow i_1\), \(\beta \rightarrow i_2\)

\(i \rightarrow (\mu_1, \alpha_1)\), \(j \rightarrow (\mu_2, \alpha_2)\)

\(i \rightarrow (\mu_1, \alpha_1)\), \(j \rightarrow (\mu_2, \alpha_2)\)

\(C_2\)

\(-\dfrac{1}{2}\)

\(\dfrac{1}{2}\)

\(-1\)

\(V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2}\)

\[\dfrac{\mu_0\mu_B^2 g_{\mu_1, \alpha_1} g_{\mu_2, \alpha_2}}{2\pi} \Biggl( 3\dfrac{(R_{\mu_2, \alpha_2}^{i_1} - R_{\mu_1, \alpha_1}^{i_1})(R_{\mu_2, \alpha_2}^{i_2} - R_{\mu_1, \alpha_1}^{i_2})}{|\mathbf{R}_{\mu_2, \alpha_2} - \mathbf{R}_{\mu_1, \alpha_1}|^5} - \dfrac{\delta_{i_1, i_2}}{|\mathbf{R}_{\mu_2, \alpha_2} - \mathbf{R}_{\mu_1, \alpha_1}|^3} \Biggr)\]
\[\frac{\mu_0}{4\pi}\mu_{\mu_1, \alpha_1} \mu_{\mu_2, \alpha_2} \frac{ \hat{r}_{\mu_1, \alpha_1; \mu_2, \alpha_2}^{i_1} \hat{r}_{\mu_1, \alpha_1; \mu_2, \alpha_2}^{i_2} - \delta_{i_1, i_2} } {r_{\mu_1, \alpha_1; \mu_2, \alpha_2}^3}\]
\[\dfrac{\mu_0}{4\pi} \frac{ 3\hat{r}_{\mu_1, \alpha_1; \mu_2, \alpha_2}^{i_1} \hat{r}_{\mu_1, \alpha_1; \mu_2, \alpha_2}^{i_2} - \delta_{i_1, i_2} } {r_{\mu_1, \alpha_1; \mu_2, \alpha_2}^3}\]

\(X_{\mu_1; \alpha_1}^{i_1}\)

\(\hat{J}_{i_1}^{\mu_1; \alpha_1}\)

\(n_{\mu_1, \alpha_1}^{i_1}\)

\(\mu_{\mu_1, \alpha_1}^{i_1}\)

\(X_{\mu_2; \alpha_2}^{i_2}\)

\(\hat{J}_{i_2}^{\mu_2; \alpha_2}\)

\(n_{\mu_2, \alpha_2}^{i_2}\)

\(\mu_{\mu_2, \alpha_2}^{i_2}\)