On-site anisotropy (k = 4)

On-site anisotropy of the fourth order involves four entities. Therefore, it can be expressed via the term \(\mathcal{H}_{0, 4}\).

\[\begin{split}\mathcal{H}_{0, 4} = C_{0, 4} \sum_{\substack{\mu_1, \mu_2, \mu_3, \mu_4 \\ \alpha_1, \alpha_2, \alpha_3, \alpha_4 \\ i_1, i_2, i_3, i_4}} V_{\mu_1, \mu_2, \mu_3, \mu_4; \alpha_1, \alpha_2, \alpha_3, \alpha_4}^{i_1, i_2, i_3, i_4} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2} X_{\mu_3; \alpha_3}^{i_3} X_{\mu_4; \alpha_4}^{i_4}\end{split}\]

The summary of the mapping for each code is given in the table below.

Code

Spirit

\(\mathcal{H}\)

\[\mathcal{H}_{\rm cubic} = - \frac12 \sum_j K_j ([\vec{n}_j]_x^4 + [\vec{n}_j]_y^4 + [\vec{n}_j]_z^4)\]

Index renaming

\(j \rightarrow (\mu_1, \alpha_1)\)

\(C_{0, 4}\)

\(- \frac12\)

\(V_{\mu_1, \mu_2, \mu_3, \mu_4; \alpha_1, \alpha_2, \alpha_3, \alpha_4}^{i_1, i_2, i_3, i_4}\)

\[V_{...}^{xxxx} = V_{...}^{yyyy} = V_{...}^{zzzz} = K_{\mu_1, \alpha_1} \delta_{\mu_1,\mu_2}\delta_{\mu_1,\mu_3}\delta_{\mu_1,\mu_4} \delta_{\alpha_1,\alpha_2}\delta_{\alpha_1,\alpha_3}\delta_{\alpha_1,\alpha_4}\]

Other components are zero.

\(X_{\mu_1; \alpha_1}^{i_1}\)

\(n_{\mu_1; \alpha_1}^{i_1}\)

\(X_{\mu_2; \alpha_2}^{i_2}\)

\(n_{\mu_2; \alpha_2}^{i_2}\)

\(X_{\mu_3; \alpha_3}^{i_3}\)

\(n_{\mu_3; \alpha_3}^{i_3}\)

\(X_{\mu_4; \alpha_4}^{i_4}\)

\(n_{\mu_4; \alpha_4}^{i_4}\)