Elastic energy

Elastic energy term involves two entities. Therefore, it can be expressed via the term \(\mathcal{H}_2\).

\[\begin{split}\mathcal{H}_2 = C_2 \sum_{\substack{\mu_1, \mu_2,\\ \alpha_1, \alpha_2,\\ i_1, i_2}} V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2}\end{split}\]

The summary of the mapping for two terms is given in the tables below.

Code

McPhase

\(\mathcal{H}\)

\[\hat{H} = \dfrac{1}{2} \sum_{\alpha\gamma=1-6} c^{\alpha\gamma} \epsilon_{\alpha} \epsilon_{\gamma}\]

Indices renaming

\(\alpha \rightarrow i_1\), \(\gamma \rightarrow i_2\)

\(C_2\)

\(\dfrac{1}{2}\)

\(V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1,i_2}\)

\(c^{i_1 i_2}\)

\(X_{\mu_1, \alpha_1}^{i_1}\)

\(\epsilon_{i_1}\)

\(X_{\mu_2; \alpha_2}^{i_2}\)

\(\epsilon_{i_2}\)

Note

  • \(i_1, i_2 = 1, \dots, 6\).

  • There is only one possible value for indices \((\mu_1; \alpha_1)\) or \((\mu_2; \alpha_2)\), namely \(\_1\).