Exchange striction

Exchange striction involves three entities. Therefore, it can be expressed via the term \(\mathcal{H}_3\).

\[\begin{split}\mathcal{H}_3 = C_3 \sum_{\substack{\mu_1, \mu_2, \mu_3\\ \alpha_1, \alpha_2, \alpha_3\\ i_1, i_2, i_3}} V_{\mu_1, \mu_2, \mu_3; \alpha_1, \alpha_2, \alpha_3}^{i_1, i_2, i_3} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2} X_{\mu_3; \alpha_3}^{i_3}\end{split}\]

The summary of the mapping for each code is given in the table below.

Code

McPhase

\(\mathcal{H}\)

\[\begin{split}\hat{\mathcal{H}} = - \dfrac{1}{2} \sum_{\substack{nn^{\prime},\alpha\beta\alpha^{\prime}\gamma=1,2,3\\\beta^{\prime}=1-6}} \Biggl( \dfrac{\partial \mathcal{J}_{\alpha\beta}}{\partial \epsilon_{\beta^{\prime}}} + \dfrac{\partial \mathcal{J}_{\alpha\beta}}{\partial R_{nn^{\prime}}^{\alpha^{\prime}}} \dfrac{\partial \epsilon_{\alpha^{\prime}\gamma} R_{nn^{\prime}}^{\gamma}}{\partial \epsilon_{\beta^{\prime}}} \Biggr) \epsilon_{\beta^{\prime}} \hat{\mathcal{I}}_{\alpha}^n \hat{\mathcal{I}}_{\beta}^{n^{\prime}}\end{split}\]

Indices renaming

\(n \rightarrow (\mu_1, \alpha_1)\), \(n^{\prime} \rightarrow (\mu_2, \alpha_2)\), \(\beta^{\prime} \rightarrow i_1\), \(\alpha \rightarrow i_2\), \(\beta \rightarrow i_3\)

\(C_3\)

\(-\dfrac{1}{2}\)

\(V_{\mu_1, \mu_2, \mu_3; \alpha_1, \alpha_2, \alpha_3}^{i_1, i_2, i_3}\)

\[\sum_{\alpha^{\prime}\gamma=1,2,3} \Biggl( \dfrac{\partial \mathcal{J}_{i_2,i_3}}{\partial \epsilon_{i_1}} + \dfrac{\partial \mathcal{J}_{i_2,i_3}}{\partial R_{\mu_1,\mu_2;\alpha_1,\alpha_2}^{\alpha^{\prime}}} \dfrac{\partial \epsilon_{\alpha^{\prime}\gamma} R_{\mu_1,\mu_2;\alpha_1,\alpha_2}^{\gamma}}{\partial \epsilon_{i_1}} \Biggr)\]

\(X_{\mu_1, \alpha_1}^{i_1}\)

\(\epsilon_{i_1}\)

\(X_{\mu_2; \alpha_2}^{i_2}\)

\(\hat{\mathcal{I}}_{i_2}^{\mu_2,\alpha_2}\)

\(X_{\mu_3; \alpha_3}^{i_3}\)

\(\hat{\mathcal{I}}_{i_3}^{\mu_3,\alpha_3}\)

Note

Indices \((\mu_1, \alpha_1)\) have only one possible value, \((\mu_1, \alpha_1) = \_1\).