Two-ion crystal field

Two-ion crystal field involves two entities. Therefore, it can be expressed as a \(\mathcal{H}_2\) term.

\[\begin{split}\mathcal{H}_2 = C_2 \sum_{\substack{\mu_1, \mu_2,\\ \alpha_1, \alpha_2,\\ i_1, i_2}} V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2}\end{split}\]

The summary of the mapping for each code is given in the table below.

Code

McPhase (v1)

McPhase (v2)

\(\mathcal{H}\)

\[\hat{\mathcal{H}} = -\dfrac{1}{2} \sum_{nn^{\prime}} \sum_{ll^{\prime}} \sum_{mm^{\prime}} K_{ll^{\prime}}^{mm^{\prime}}(nn^{\prime}) \hat{O}_{lm}(\mathbf{J}^n) \hat{O}_{l^{\prime}m^{\prime}}(\mathbf{J}^{n^{\prime}})\]
\[\hat{\mathcal{H}} = - \dfrac{1}{2} \sum_{nn^{\prime}} \Biggl[ \sum_{kk^{\prime}} \sum_{qq^{\prime}} \mathcal{K}_{kk^{\prime}}^{qq^{\prime}}(nn^{\prime}) \hat{T}_{kq}^n \hat{T}_{k^{\prime}q^{\prime}}^{n^{\prime}} \Biggr]\]

Renaming of indices

\((l,m) \rightarrow i_1\), \((l^{\prime},m^{\prime}) \rightarrow i_2\), \(n \rightarrow (\mu_1, \alpha_1)\), \(n^{\prime} \rightarrow (\mu_2, \alpha_2)\)

\((k,q) \rightarrow i_1\), \((k^{\prime},q^{\prime}) \rightarrow i_2\), \(n \rightarrow (\mu_1, \alpha_1)\), \(n^{\prime} \rightarrow (\mu_2, \alpha_2)\)

\(C_2\)

\(-\dfrac{1}{2}\)

\(-\dfrac{1}{2}\)

\(V_{\mu_1, \mu_2; \alpha_1, \alpha_2}^{i_1, i_2}\)

\(K_{i_1, i_2}(\mu_1, \alpha_1; \mu_2, \alpha_2)\)

\(\mathcal{K}_{i_1, i_2}(\mu_1, \alpha_1; \mu_2, \alpha_2)\)

\(X_{\mu_1; \alpha_1}^{i_1}\)

\(\hat{O}_{i_1}(\mathbf{J}^{\mu_1, \alpha_1})\)

\(\hat{T}_{i_1}^{\mu_1, \alpha_1}\)

\(X_{\mu_2; \alpha_2}^{i_2}\)

\(\hat{O}_{i_2}(\mathbf{J}^{\mu_2, \alpha_2})\)

\(\hat{T}_{i_2}^{\mu_2, \alpha_2}\)

Note

  • Pairs of indices \((l,m)\) (\((l^{\prime},m^{\prime})\)) or \((k,q)\) (\((k^{\prime},q^{\prime})\)) run over the finite set of the integer pairs. Therefore, they can be enumerated with a single integer and mapped to the index \(i_1\) (\(i_2\)).