Biquadratic exchange

Bilinear exchange involves four entities (two entities per site). Therefore, it can be expressed via the term \(\mathcal{H}_{0, 4}\).

\[\begin{split}\mathcal{H}_{0, 4} = C_{0, 4} \sum_{\substack{\mu_1, \mu_2, \mu_3, \mu_4\\ \alpha_1, \alpha_2, \alpha_3, \alpha_4\\ i_1, i_2, i_3, i_4}} V_{\mu_1, \mu_2, \mu_3, \mu_4; \alpha_1, \alpha_2, \alpha_3, \alpha_4}^{i_1, i_2, i_3, i_4} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_2; \alpha_2}^{i_2} X_{\mu_3; \alpha_3}^{i_3} X_{\mu_4; \alpha_4}^{i_4}\end{split}\]

The summary of the mapping for each code is given in the table below.

Code

SpinW

Spirit

\(\mathcal{H}\)

\[\mathcal{H} = \sum_{i \neq j} B (\mathbf{S}_i \cdot \mathbf{S}_j)^2\]
\[\mathcal{H}_{\rm quad} = - \sum_{ij} K_{ij} (\vec{n}_i \cdot \vec{n}_j)^2\]

Indices renaming

\(i \rightarrow (\mu_1, \alpha_1)\), \(j \rightarrow (\mu_2, \alpha_2)\)

\(i \rightarrow (\mu_1, \alpha_1)\), \(j \rightarrow (\mu_2, \alpha_2)\)

\(C_{0, 4}\)

1

-1

\(V_{\mu_1, \mu_2, \mu_3, \mu_4; \alpha_1, \alpha_2, \alpha_3, \alpha_4}^{i_1, i_2, i_3, i_4}\)

\(B\cdot \delta_{\mu_1, \mu_2} \delta_{\mu_3,\mu_4} \delta_{\alpha_1, \alpha_2} \delta_{\alpha_3,\alpha_4}\) if \((i_1, i_2, i_3, i_4) \in \mathcal{K}\) and 0 otherwise.

\(K_{\mu_1, \mu_2; \alpha_1, \alpha_2}\) if \((i_1, i_2, i_3, i_4) \in \mathcal{K}\) and 0 otherwise.

\(X_{\mu_1; \alpha_1}^{i_1}\)

\(S_{\mu_1; \alpha_1}^{i_1}\)

\(n_{\mu_1; \alpha_1}^{i_1}\)

\(X_{\mu_2; \alpha_2}^{i_2}\)

\(S_{\mu_2; \alpha_2}^{i_2}\)

\(n_{\mu_2; \alpha_2}^{i_2}\)

\(X_{\mu_3; \alpha_3}^{i_3}\)

\(S_{\mu_3; \alpha_3}^{i_3}\)

\(n_{\mu_3; \alpha_3}^{i_3}\)

\(X_{\mu_4; \alpha_4}^{i_4}\)

\(S_{\mu_4; \alpha_4}^{i_4}\)

\(n_{\mu_4; \alpha_4}^{i_4}\)

Note

  • \(\mathcal{K} = \{(x,x,x,x), (y,y,y,y), (z,z,z,z), (x,y,x,y), (x,z,x,z), (y,z,y,z), (y,x,y,x), (z,x,z,x), (z,y,z,y)\}\)

  • Spirit

    Spirit includes more general Hamiltonian that is called "quadruplet interaction"

    \[\mathcal{H}_{\rm quad} = - \sum_{ijkl} K_{ijkl} (\vec{n}_i \cdot \vec{n}_j)(\vec{n}_k \cdot \vec{n}_l)\]

    in the case \(i = k\) and \(j = l\) (or, equivalently, \(i = l\) and \(j = k\)) this interaction describe a biquadratic exchange. Other cases are considered in the page Quadruplet interaction.