Quadruplet interaction¶
In Spirit, the quadruplet interaction term is written as
First, notice, that \(i \ne j\) and \(k \ne l\), otherwise the Hamiltonian is constant. Therefore, only three cases are possible:
\(i = k\) and \(j = l\) (or equivalently \(i = l\) and \(j = k\))
This is a case of Biquadratic exchange.
\(i = k\) and \(j \ne l\) (or equivalently \(i = l\) and \(j \ne k\) or \(j = k\) and \(i \ne l\) or \(j = l\) and \(i \ne k\))
This is case 1. The Hamiltonian maps to the term of the general Hamiltonian with \(k = 4\), \(l = 4\) (\(m_{4,4} = 3\)).
\[\begin{split}\mathcal{H}_{4, 4} = C_{4, 4} \sum_{\substack{\mu_1, \mu_2, \mu_3, \\ \alpha_1, \alpha_2, \alpha_3, \\ i_1, i_2, i_3, i_4}} V_{\mu_1, \mu_2, \mu_3; \alpha_1, \alpha_2, \alpha_3}^{i_1, i_2, i_3, i_4} \cdot X_{\mu_1; \alpha_1}^{i_1} \cdot X_{\mu_1; \alpha_1}^{i_2} \cdot X_{\mu_2; \alpha_2}^{i_3} \cdot X_{\mu_3; \alpha_3}^{i_4}\end{split}\]\(i \ne k\) and \(j \ne l\) and \(i \ne l\) and \(j \ne k\)
This is case 2. The Hamiltonian maps to the term of the general Hamiltonian with \(k = 4\), \(l = 5\) (\(m_{4,5} = 4\)).
\[\begin{split}\mathcal{H}_{4, 5} = C_{4, 5} \sum_{\substack{\mu_1, \mu_2, \mu_3, \mu_4, \\ \alpha_1, \alpha_2, \alpha_3, \alpha_4, \\ i_1, i_2, i_3, i_4}} V_{\mu_1, \mu_2, \mu_3, \mu_4; \alpha_1, \alpha_2, \alpha_3, \alpha_4}^{i_1, i_2, i_3, i_4} \cdot X_{\mu_1; \alpha_1}^{i_1} \cdot X_{\mu_2; \alpha_2}^{i_2} \cdot X_{\mu_3; \alpha_3}^{i_3} \cdot X_{\mu_4; \alpha_4}^{i_4}\end{split}\]
Quadruplet interaction (case 1)¶
By expanding the dot product, one gets
where the tensor \(K_{ijl}^{i_1, i_2, i_3, i_4}\) is defined as
and all other components are zero. Then one renames the indices as \(i \rightarrow (\mu_1, \alpha_1)\), \(j \rightarrow (\mu_2, \alpha_2)\), \(l \rightarrow (\mu_3, \alpha_3)\) and correspondence becomes clear
Quadruplet interaction (case 2)¶
By expanding the dot product, one gets
where the tensor \(K_{ijkl}^{i_1, i_2, i_3, i_4}\) is defined as
and all other components are zero. Then one renames the indices as \(i \rightarrow (\mu_1, \alpha_1)\), \(j \rightarrow (\mu_2, \alpha_2)\), \(k \rightarrow (\mu_3, \alpha_3)\), \(l \rightarrow (\mu_4, \alpha_4)\) and correspondence becomes clear