On-site anisotropy (k = 2)

On-site anisotropy of the second order involves one site and two entities. Therefore, it can be expressed via the term \(\mathcal{H}_{2, 1}\).

  • \(k = 2\)

  • \(l = 1\)

  • \(m_{2,1} = 1\)

\[\begin{split}\mathcal{H}_{2,1} = C_{2, 1} \sum_{\substack{\mu_1, \\ \alpha_1,\\ i_1, i_2}} V_{\mu_1; \alpha_1}^{i_1, i_2} X_{\mu_1; \alpha_1}^{i_1} X_{\mu_1; \alpha_1}^{i_2}\end{split}\]

The summary of the mapping for each code is given in the table below.

Code

GROGU

juKKR, Magpie, SpinW

Spirit

TB2J

\(\mathcal{H}\)

\[\mathcal{H} = \sum_{i} \boldsymbol{e}_{i} \cdot \boldsymbol{K}_{i} \cdot \boldsymbol{e}_{i}\]
\[\mathcal{H} = \sum_{i} \mathbf{S}_{i} \cdot \boldsymbol{A}_{i} \cdot \mathbf{S}_{i}\]
\[\mathcal{H}_{\rm uni} = \sum_j K_j (\hat{K}_j\cdot\vec{n}_j)^2\]
\[\mathcal{H} = - \sum_{i} \mathbf{S}_{i} \cdot \boldsymbol{A}_{i} \cdot \mathbf{S}_{i}\]

Index renaming

\(i \rightarrow (\mu_1, \alpha_1)\)

\(i \rightarrow (\mu_1, \alpha_1)\)

\(j \rightarrow (\mu_1, \alpha_1)\)

\(i \rightarrow (\mu_1, \alpha_1)\)

\(C_{2,1}\)

\(1\)

\(1\)

\(1\)

\(-1\)

\(V_{\mu_1; \alpha_1}^{i_1, i_2}\)

\(K_{\mu_1; \alpha_1}^{i_1, i_2}\)

\(A_{\mu_1; \alpha_1}^{i_1, i_2}\)

\[\begin{split}K_j^{i_1, i_2} = \begin{pmatrix} K_j \left(\hat{K}_{j}^{x}\right)^2 & K_j \hat{K}_{j}^{x} \hat{K}_{j}^{y} & K_j \hat{K}_{j}^{x} \hat{K}_{j}^{z} \\ K_j \hat{K}_{j}^{x} \hat{K}_{j}^{y} & K_j \left(\hat{K}_{j}^{y}\right)^2 & K_j \hat{K}_{j}^{y} \hat{K}_{j}^{z} \\ K_j \hat{K}_{j}^{x} \hat{K}_{j}^{z} & K_j \hat{K}_{j}^{y} \hat{K}_{j}^{z} & K_j \left(\hat{K}_{j}^{z}\right)^2 \end{pmatrix}\end{split}\]

\(A_{\mu_1; \alpha_1}^{i_1, i_2}\)

\(X_{\mu_1; \alpha_1}^{i_1}\)

\(e_{\mu_1; \alpha_1}^{i_1}\)

\(S_{\mu_1; \alpha_1}^{i_1}\)

\(n_{\mu_1; \alpha_1}^{i_1}\)

\(S_{\mu_1; \alpha_1}^{i_1}\)